 SEL-84-01

|

|

|

|
i i
it ‘

’P-‘m

NTL-1STTS

(NASA-TM-103417) MARAL R0 HANDBTIIUK FJE
ETWAKE DEVELUPMENT, REVISION 1 (NASA

SNFTWARE DEVELUY ' CSCL 093

9C p unclas
G3/61 0326323

=7=‘

'National Aaonautics and
| Space Admeaiatration

Hg anter

SOFTWARE ENGINEERING LABORATORY SERIES SEL-84-101

Manager's Handbook for
Software Development

Revision 1

NOVEMBER 1990

NNS

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

. f \rl "

[IR

PG\ \ _INTENTIONALLY BLANG

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Acronautics and Space Administration/Goddard Space Flight Center (N ASA/GSFC) and created for
the purpose of investigating the effectiveness of software engineering technologics when applicd to
the development of applications software. The SEL was created in 1977 and has three primary
organizational members: NASA/GSFC, Systems Development Branch; University of
Maryland, Computer Sciences Department; Computer Sciences Corporation, Flight
Dynamics Technology Group.

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effect of various methodologies, tools, and models on this process;
and (3) to identify and then to apply successful development practices. The activitics, findings, and
recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a
continuing series of reports that includes this document. '

The Manager’s Handbook for Software Development was originally published in April 1984,
Contributors 1o the original version included

William Agresti, Computer Sciences Corporation
Frank McGarry, Goddard Space Flight Center
David Card, Computer Sciences Corporation
Jerry Page, Computer Sciences Corporation
Victor Church, Computer Sciences Corporation
Roger Werking, Goddard Spacc Flight Center

The new edition contains updated material and constitutes a major revision. The primary
contributors to the current edition are

Linda Landis, Editor, Computer Sciences Corporation
Frank McGarry, Goddard Spacc Flight Center

Sharon Waligora, Computer Sciences Corporation
Rose Pajerski, Goddard Space Flight Center

Mike Stark, Goddard Space Flight Center

Rush Kester, Computer Sciences Corporation

Tim McDermott, Computer Scicnces Corporation
John Miller, Computer Sciences Corporation

Single copies of this document can be obtained by writing to
Systems Development Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

i

PRECEDING PAGE BLANK NOT FILMED

L TR TR ST A T S S

" i 4 £ S | (N S |

Tl

'IH‘

l ‘ —

m:

|

4

L
!

‘fh

e

1

| I

ABSTRACT

Methods and aids for the management of sofiware development projects are presented. The
recommendations are based on analyses and experiences of the Software Engineering Laboratory
(SEL) with flight dynamics software development. The management aspects of the following
subjects are described: organizing the project, producing a development plan, estimating costs,
scheduling, staffing, preparing deliverable documents, using management tools, monitoring the
project, conducting reviews, auditing, testing, and certifying.

prt_ |\ _INTENTIONALLY BLANK PRECEDING PAGE BLANK NOT FILMED

| ny L vy '"m rm

ik DENEEY S R Y

ma

(

(]

1

¢

R DT A DU AT SR

("

pxce \J__INTENTIONAITY BOANE

TABLE OF CONTENTS

Section 1 — Introduction
Handbook Overview
Intended Audience
Software Life Cycle
Activities Spanning Phases

Section 2 — Organizing and Planning
Organizing the Project
Producing the Software Development/Management Plan
Executing the Software Development/Management Plan

Section 3 — Cost Estimating, Scheduling, and Staffing
Estimating Development Cost and Schedule
Project Staffing
Other Software Development Costs
Cost of Computer Utilization
Cost of System Documentation
Cost of Rehosting Software
Cost of Reusing Software
Cost of Software Maintenance

Section 4 — Key Documents and Deliverables
Suggested Document Contents
Guidelincs for Evaluating Completed Documents

Section 5 — Verification, Testing, and Certification
Code Reading
Unit Testing
Integration Testing
Build/Release Testing
System Testing
Acceptance Testing
Test Management Guidelines
Certification

Section 6 — Metrics and Key Management Aids
Metrics
Management Metrics and Their Use
Source Code Growth Rate
Effort Data
System Size Estimates
Computer Usage

vii

PRECEDING PAGE BLANK NOT FILMED

1-1
1-1

1-3
1-5
2-1
2-1
2-2
2-5

3-1

4-11

5-1

TABLE OF CONTENTS (Cont'd)

Section 6 — Metrics and Key Management Aids (Cont'd)

Error Rates

Reported/Corrected Software Discrepancies

Rate of Software Change
Development Activity Status
Additional Management Metrics
Data Collection
Automating Metrics Analysis
General Indicators of Project Status

Warning Signals and Corrective Actions

Basic Set of Corrective Actions

Section 7 — Reviews and Audits
Reviews
System Requirements Review
Software Specifications Review
Preliminary Design Review
Critical Design Review
Operational Readiness Review
Audits

Appendix A — SEL Software Development Environment

Glossary
References

Standard Bibliography of SEL Literature

viii

e TR

69

6-10
6-11
6-12
6-13
6-13
6-15
6-16
6-18

7-1

72
74
7-6
7-8
7-10
7-13

t
il

A M

b

Qi

i

) |

i
i

il

(/0 ®Wy m i Wb wm & o« &

L

s

g}

;w

A
"/

pmoon

] 1

S AR I (r

[

1

Figure

1-1
1-2
2-1

32
33

42
4-3
44
4-5
4-6

4-8
4-9
4-10
5-1
6-1
6-2
6-3
6-4
6-5
6-6

6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20

72
73
74
7-5
7-6

LIST OF ILLUSTRATIONS

Activities by Percentage of Total Development Staff Effort
Reuse and Prototyping Activities Within the Life Cycle

Software Development/Management Plan Contents
Cost Estimation Schedule

Typical Computer Utilization Profile (FORTRAN Projects)

Typical Computer Utilization Profile (Ada Projects)
Key Documents and Deliverables by Phase

Requirements and Functional Specifications Contents

Operations Concept Document Contents
Requirements Analysis Report Contents
Preliminary Design Report Contents
Detailed Design Document Contents
Contents of Test Plans

User's Guide Contents

System Description Contents

Software Development History Contents
Example of Unit Design Certification
Management Through Mcasurement

SEL Software Growth Profile

Example of Code Growth — GRO AGSS
SEL Staffing Profile Model

SEL Effort Distribution Models

Effort Data Example — ERBS AGSS
SEL Sizc Estimates Modcl

Sample Size Estimates — UARS AGSS
SEL Computcr Usage Model

Example of Computer Usage — ERBS AGSS
SEL Error Rate Model

Devclopment Error Rates — SEL Example
SEL Software Discrepancy Status Model
Discrepancy Tracking on TCOPS

SEL Change Rate Modcl

Change Rate Example — GOES AGSS
SEL Development Status Model for a Single Build
GOADA Devclopment Profile

Example SME Output

Build Corporate Mcmory Into a Tool
Scheduling of Formal Revicws

SRR Hardcopy Material

SSR Hardcopy Material

PDR Hardcopy Material

CDR Hardcopy Material

ORR Hardcopy Material

Page

1-3
1-5
2-3
32

3-6
4-1

4-3
44
45
4-6
4-7
4-8
49
4-10
5-6
6-2
6-3
6-3
64
64
6-5
66
6-6
6-7
6-7

6-8
69

6-10
6-10
6-11
6-11
6-14
6-15
7-1

7-5
7-7

7-11

5-1

LIST OF TABLES

Distribution of Time Schedule and Effort Over Phases
Procedures for Reestimating Size, Cost, and Schedule
During Development

Complexity Guideline

Development Team Experience Guideline

Team Size Guideline

Guideline for Development Team Composition

Cost of Rehosting Software

Cost of Reusing Software

Expected Percentage of Tests Executed That Pass
SEL Recommended Metrics

"Page

6-12

il i <l

Wi

ar

il

|

"y
A

4

4l

I gl g uwl <

win

0

weon

I

(]

¢

e

.

!

i

SECTION 1 — INTRODUCTION

This handbook is intended to be a convenient reference on software management methods and aids.
The approach is to offer concise information describing

» What the methods and aids can accomplish

« When they can be applied

« How they are applied

« Where the manager can find more background or explanatory material

The management methods and aids included here are those that have proved effective in the
experiences of the Software Engineering Laboratory (SEL) (Reference 1). The characteristics of
software projects in the flight dynamics environment monitored by the SEL appear in the appendix
to this document. The applications include attitude determination and control, orbit adjustment,
maneuver planning, and general mission analysis.

HANDBOOK OVERVIEW
This document consists of seven sections organized by specific management topics:

Section 1 presents the handbook's purpose, organization, and intended audience. The software
life cycle and key development activities are summarized.

Section 2 discusses the basic management concems of organizing and planning in the context of
software management. The production of the software development management plan is
covered in detail.

Section 3 describes resource estimation and allocation. Techniques arc presented [or
estimating size, costs, and effort. Guidelines are given for project scheduling and for stafl
allocation and composition.

Section 4 outlines contents, timing, and cvaluation of key documents and deliverables in a
software project.

Section 5 discusses the management aspects of software verification, testing, and
certification.

Section 6 summarizes management measures and aids used in monitoring and
controlling a software project. Key indicators of progress are listed along with waming signals
and corresponding corrective measures.

Section 7 presents both the general function of project reviews and the specific implementation
of the five major reviews. Guidelines for auditing a project are also introduced.

An appendix, glossary, references, and a bibliography of SEL litcrature conclude the
handbook.

1-1

INTENDED AUDIENCE

The intended audience of this document is the software manager, who, as defined in this handbook,
serves as either an administrative or technical manager. The positions overlap somewhat in their
information needs.

The administrative manager has overall responsibility for developing software that meets
requirements and is delivered on time and within budget. In the SEL environment, a Government
Technical Officer or Assistant Technical Representative (ATR) generally serves in this capacity.
Typically, this manager is not involved with the day-to-day technical supervision of the
programmers and analysts who are developing the software. The administrative manager will be
involved in the activities listed below; the corresponding handbook sections are listed alongside.

« Organizing the project Section 2
« Estimating resources required Section 3
» Estimating costs Section 3
« Evaluating documents and deliverables Section 4
» Monitoring progress Section 6
« Evaluating results of reviews and audits Section 7
» Certifying the final product Section 5

The technical manager is responsible for direct supervision of the developers. The position is
frequently filled by a contractor manager in the SEL environment; although, on some projects, a
Government manager will fill this role instead. This person shares some of the activitics listed for
the administrative manager, especially with regard to monitoring development progress. The
technical manager's activities and the corresponding handbook references are presented below.

+ Producing and executing the softwarc

development/management plan Section 2
» Estimating costs Section 3
+ Scheduling the project Section 3
+ Staffing the project Section 3
« Directing the production of documents

and deliverables Section 4
» Using automated management aids Section 6
+ Monitoring development progress Section 6
« Supervising technical staff Section 6
« Ensuring software quality Section 5
« Preparing for reviews Section 7

A secondary audicnce for the handbook consists of those who scrve a particular peripheral function .

but do not act in either of the two managerial capacities. Two examples of such specific functions
are participating as an external reviewer at a scheduled review and conducting an audit of the

project.

Government managers should note that there is no identifiable conflict between the material
presented in this handbook and major NASA/GSFC standards.

[

) 1/

1§
|

- W

4

Vil

40 ui 4m wie NI 4 € 1

tn

1}

moA
i

i

!

SOFTWARE LIFE CYCLE

The process of software development is often modeled as a series of stages that define the software
life cycle. In the flight dynamics environment, the life cycle is defined by the following phascs:

« Requirements definition

« Requirements analysis

« Preliminary design
Detailed design

« Implementation

» System testing

» Acceptance testing

« Maintenance and operation

As shown in Figure 1-1, the phases divide the software life cycle into sequential time periods that
do not overlap. However, the activities characteristic of one phase may be performed in other
phases. For example, although most of the staff effort in analyzing requirements occurs during the
requirements analysis phase, some of that activity continues at lower levels in later phases.

SRR SSR POR COR OER

ACCEPTANCE
TESTING

SYSTEM TESTING

PERCENTAGE OF TOTAL STAFF EFFORT

]
J
QUIREMENTS ANALYSIS
L]

IMPLEMENTATION PHASE 'SYSTEM

REQUIREMENTS 1 DETAILED ACCEPTANCE MAINTENANCE
DEFINITION 1 DESIGN TEST TEST PHASE AND
PHASE 1 PHASE PHASE OPERATION
PRELIMINARY PHASE
DESIGN PHASE
AEQUIREMENTS CALENDARTIME ———

ANALYSIS PHASE

Figure 1-1. Activities by Percentage of Total Development Staff Effort

Example: Atthe end of the implementation phase (4th dashed line), approximately 46% of the
staff are involved in system testing; approximately 15% are preparing for acceptance testing;
approximately 7% are addressing requirements changes or problems; approximately 12% are
designing modifications; and approximately 20% are coding, code reading, unit testing, and
integrating changes. Data are shown only for the phases of the software life cycle for which the
SEL has a representative sample.

1-3

The life cycle phases are important reference points for the software manager. For example, in
monitoring a project, the manager may find that the key indicators of project condition at one phase
are not available at other phases. Milestones in the progress of a software project are keyed to the
reviews, documents, and deliverables that mark the transitions between phases. Management aids
and resource estimates can be applied only at certain phases because their use depends on the
availability of specific information.

In the requirements definition phase, a working group of analysts and developers identifies
previously developed subsystems that can be reused on the current project and submits a reuse
proposal. Guided by this proposal , a requirements definition team prepares the requirements
document and completes a draft of the functional specifications for the system. The conclusion of
this phase is marked by the system requirements review (SRR) at which the requirements for the
system are evaluated.

During the next phase, requirements analysis, the development team classifies each
specification and performs functional or object-oriented analysis. Working with the requircments
definition team, developers resolve ambiguities, discrepancies, and to-be-determined (TBD)
specifications, producing a final version of the functional specifications document and a
requirements analysis report. This phase is concluded with a software specifications review (SSR)
at which the results of the analysis are presented for evaluation.

The baselined functional specifications form a contract between the requirements definition tcam

and the software development team and are the starting point for preliminary design. During
this third phase, members of the development team produce a preliminary design report in which
they define the software system architecture and specify the major subsystems, input/output (I/O)
interfaces, and processing modes. The preliminary design review (PDR), conducted at the end of
this phase, provides an opportunity for evaluating the design presented by the development tcam.

In the fourth phase, detailed design, the system architccture defined during the previous phasc is
elaborated in successively greater detail, 1o the level of subroutines. The development team fully
describes user input, system output, I/O files, and intermodulc interfaces. Animplementation plan
is produced, describing a series of builds and releascs that culminate with the delivered software
system. The corresponding documentation, including complete bascline diagrams, makes up the
detailed design document. At the critical design review (CDR), the detailed design is cvaluated 1o
determine if the levels of detail and completeness are sufficient for coding to begin.

During the implementation (code, unit testing, and integration) phase, the development tcam
codes the required modules using the detailed design document. The system grows as new
modules are coded, tested, and integrated. The developers also revise and test reused modules and
integrate them into the evolving system. Implementation is complete when all code is intcgrated and
when supporting documents (system test plan and draft user’s guide) are wrilten.

The sixth phase, system testing, involves the functional testing of the end-to-cnd system
capabilities according to the system test plan. The development team validates the completely
integrated system and produces a preliminary system description document. Successful complction
of the tests required by the system test plan marks the end of this phase.

During the seventh phase, acceptance testing, an acceptance test cam that is independent of the

software development team examines the completed system to determine if the original requircments
have been met. Acceptance testing is complete when all tests specified in the acceptance test plan

14

T

0N <€

\ 1

| [

4

10

1100

i

N

M

I0 v, g 4

NI

{

i

'

{

have been run successfully. Final versions of the user’s guide and system description are
published, and an operational readiness review (ORR) is conducted to evaluate the system’s
readiness to begin operational support.

The eighth and final phase, maintenance and operation; begins when acceptance testing ends.
The system becomes the responsibility of the maintenance and operation group. The nature and
extent of activity during this phase depends on the type of software developed. For some support
software, the maintenance and operation phase may be very active due to the changing needs of the
users.

ACTIVITIES SPANNING PHASES

In the flight dynamics environment, reuse and prototyping are key activities in several phases of
the life cycle.

In the requirements definition and requirements analysis phases, reuse analysis is performed to
determine which major segments (subsystems) of existing software can be utilized in the system 10
be developed. In the design phases, developers conduct a verification of this analysis by
examining each reusable element individually. During the preliminary design phase, developers
study major components to determine if they can be reused verbatim or modified. Extraction of
individual units from a reusable software library (RSL) is conducted during the detailed design
phase. A final reuse activity occurs at the end of the system test phase, at which time developers
select pieces of the developed software as candidates for inclusion in the RSL.

Prototyping activities are usually begun during requirements analysis and completed by the end
of detailed design. A protoype is an early experimental model of a system, sysiem componcnt, or
system function that contains cnough capabilities for it to be used to cstablish or refine requircments
or to validate critical design concepts. In the flight dynamics cnvironment, prototypes arc gencrally
used to mitigate risks by resolving unknowns related to new technology.

Figure 1-2 shows the span of these two categories of activity in the SEL cnvironment.

SRR SSR POR CDR oR

————g———p === ——— -

REUSE ANALYSIS
{subsystem level)

REUSE VERIFICATION
(component & unit level} EXTRACTION
OF RSL
I CANDIDATES
l PROTOTYPING
—— S S w— ———L——I —————————————— — ey " — v E—— S W WS SEE w—— O — e S—
REQUIREMENTS DETAILED IMPLEMENTATION SYSTEM ACCEPTANCE MAINTENANCE
DEFINITION DESIGN PHASE PHASE TESTING TESTING PHASE AND OPERATION
PHASE PRELIMINARY PHASE PHASE

DESIGN PHASE
REQUIREMENTS ANALYSIS PHASE

CALENDARTIME —»
Figure 1-2. Reuse and Prototyping Activities Within the Life Cycle
The management methods and aids in this handbook are associated with the phases from

requirements definition through acceptance testing. Reference 2 contains a morc detailed
explanation of life cycle phases and activities.

') <4l f | [TAEN T WD |

? (R (1 (TR T Vil min oai

I

. |

(-

PoAT

I

¢

1]

€

SECTION 2 — ORGANIZING AND PLANNING

The key to successful software management is to generate a realistic, usable plan and then follow it.
The critical early stages of organizing and planning lay the foundation for effective project
management and control.

ORGANIZING THE PROJECT

To get started, the manager must gain a clear understanding of the scope of the project and must
establish the basis for control. The major initial concems relate to clarifying the requirements, the
deliverables, and the organizational framework. By addressing the four sets of questions below,
the manager will acquire an understanding of the key elements that will affect project planning.

Identifying the Requirements

What functions must the system perform?

How will the system be operated?

Are the boundaries of the system visible?

In what form does the job definition exist?

Is the current job definition understandable?

Does the project depend on external events or activities?

Identifying the Products and Deliverables

What documents, programs, and files are specified as deliverable products?
When must they be delivered?

In what form are the deliverables, e.g., draft copies or on tape’?

Who will receive the deliverables and accept the final product?

What criteria will be used to judge the acceptability of the final product?

Preparing for Control

Is there a timetable for periodic reporting of project status?

What is the procedure for incorporating requirements changes that affect the scope of the work?
What reviews will be necessary to mark the transitions between phases?

Are there technical or managerial risks to successful completion of the project?

What measures will be used 10 assess project health?

Establishing an Organizational Identity

Who will be the key contact people from the customer, developer, and support groups?
Do the different groups understand their areas of project responsibility?

Where will the development work be done?

Which development computers will be used?

What level of access to the computers will be required?

PRODUCING THE SOFTWARE DEVELOPMENT/MANAGEMENT PLAN

In many environments, the software management plan and the software development plan are
separate policy documents with different orientations. The management plan is directed toward the
broader aspects of administration and control, e.g., project-level monitoring of resource
expenditures and the functioning of the configuration control board (CCB). The development plan
focuses more on methods and approaches to software production, e.g., testing strategics and
programming methodologies. Although these differences exist between the two plans, there is
generally some material in common.

In the flight dynamics environment of the SEL, the two plans are combined into a single document,
the software development/management plan. Although the remainder of this section describes the
contents of a single combined plan, the reader is encouraged to separate the contents into two plans
if that is more appropriate to the needs of his/her environment. In either case, the items in this
section must be formally addressed for a project to be successful.

The software development/management plan provides a disciplined approach to organizing and
managing the software project. A successful plan serves as

= A structured checklist of important questions

« Consistent documentation for project organization

+ A baseline reference with which to compare actual project performance and cxperiences
« A detailed clarification of the management approach to be used

By compléting the plan early in the life cycle, the manager becomes familiar with the essential steps
of organizing the development effort:

+ Estimating resourccs

« Establishing schedulcs
« Assembling a staff

» Sctting milestoncs

The plan should concentrate on information that is unique or tailored to the project at hand. If
standard policies, guidelines, or procedurcs will be applicd to an aspect of the project, the plan
should reference the documents in which these arc defined rather than restating them in detail.
Writing the plan can begin as soon as any information about the project definition and scope
becomes available. The plan should be completed by the end of the requirements analysis phasc,
except for information available only at later phases. If items in the software development/
management plan are missing for any rcason, the manager should indicate who will supply the
information and when it will be supplied.

Copics of the plan should be provided to all levels of project management and the project's technical
staff.

Figure 2-1 presents the suggested format and contents for the software development/management
plan, including several references to sections of this handbook for detailed descriptions. The
format is intended as a guide. Depending on the application environment, a different arrangement
of items or the addition of new material may be appropriate.

¢ 8

Wi

6« 0l & il & all K &

[

Ll

(

I

SOFTWARE DEVELOPMENT/MANAGEMENT PLAN

Sections in italics describe material that is to be regularly added to the plan during the life of the
project. Other sections should be revised and reissued if circumstances require significant
changes in approach.

TITLE PAGE — document number, project and task names, report title, and report date.

LEAD SHEET — document identification numbers, project and task names, report title, customer
name, preparers, contract and task identifiers, and report date.

TABLE OF CONTENTS — list of subsection titles and page numbers.
1. INTRODUCTION

1.1 Purpose — brief statement of the project's purpose.
12 Background — brief description that shows where the software products produced
by the project fit in the overall system.
13 Organization and Responsibilities
1.3.1 Project Personnel —explanation and diagram of how the development team
will organize activities and personnel to carry out the project: types and
numbers of personnel assigned, reporting relationships, and team members'
authorities and responsibilities (see Section 3 for guidelines on team
composition).
1.3.2 Interfacing Groups — list of interfacing groups, points of contact, and
group responsibilities.)

2. STATEMENT OF PROBLEM — brief elaboration of the key requirements, the steps to be
done, the steps (numbered) necessary to do it, and the relation (if any) to other projects.

3. TECHNICAL APPROACH

31 Reuse Strategy — description of the current plan for reusing software from existing
systems.

32 Assumptions and Constraints — that govern the manner in which the work will be
performed.

33 Anticipated and Unresolved Problems — that may affect the work and the

expected effect on each phase.

Development Environment — target development machine and programming

languages.

35 Activities, Tools, and Products — for each phase, a matrix showing: a} the major
activities to be performed, b) the development methodologies and tools to be
applied, and c) the products of the phase (see Section 4). Includes discussion of any
unique approaches or activities.

36 Build Strategy — what portions of the system will be implemented in which builds
and the rationale. Updated at the end of detailed design and after each build.

S

4. MANAGEMENT APPROACH

4.1 Assumptions and Constraints — that affect the management approach,
including project priorities.
42 Resource Requirements — tabular lists of estimated levels of resources required,

including estimates of system size (new and reused LOC and modules), staff effort
(managerial, programmer, and support) by phase, training requirements, and
computer resources (see Section 3). Includes estimation methods or rationale used.
Updated estimates are added at the end of each phase.

Figure 2-1. Software Development/Management Plan Contents (1 of 2)

43 Milestones and Schedulaes — list of work to be done, who will do it, and when it
will be completed. Includes development life cycle {phase start and finish dates);
build/release dates; delivery dates of required external interfaces; schedule for
integration of externally developed software and hardware; list of data, information,
documents, software, hardware, and support to be supplied by external sources and
delivery dates; list of data, information, documents, software, and support to be
delivered to the customer and delivery dates; and schedule for reviews (internal and
external). Updated schedules are added at the end of each phase.

44 Metrics — a table showing, by phase, which metrics will be collected to capture
project data for historical analysis and which will be used by management to
monitor progress and product quality (see Section 6 and Reference 3). If standard
metrics will be collected, references to the relevant standards and procedures will
suffice. Describes any measures or data collection methods unique to the project.

45 Risk Management — statements of each technical and managerial risk or
concern and how it is to be mitigated. Updated at the end of each phase to
incorporate any new concerns.

PRODUCT ASSURANCE

5.1 Assumptions and Constraints — that affect the type and degree of quality
control and configuration management to be employed.

52 Quality Assurance (QA) — table of methods and standards used to ensure the

quality of the development process and products {by phase). Where these do not
deviate from published methods and standards, the table references the appropriate
documentation. Means of ensuring or promoting quality that are innovative or
unique to the project are described explicitly. Identifies the person(s) responsible for
QA on the project, and defines histher functions and products by phase.

53 Configuration Management (CM) — table showing products controlled, tools and
procedures used to ensure the integrity of the system configuration: when the
system is under control, how changes are requested, who makes the changes, etc.
Unique procedures are discussed in detail. If standard CM practices are to be
applied, references to the appropriate documents are sufficient. ldentifies the
person responsible for CM and describes this role. Updated before the beginning of
each new phase with detailed CM procedures for the phase, including naming
conventions, CM directory designations, reuse libraries, etc.

REFERENCES

PLAN UPDATE HISTORY — development plan lead sheets from each update indicating
which sections were updated.

Figure 2-1. Software Development/Managen'lent Plan Contents (2 of 2)

24

|

]

4l wir A [al W W

o €

L !

EXECUTING THE SOFTWARE DEVELOPMENT/MANAGEMENT PLAN

The plan will be an effective management aid only to the extent that it is followed. The manager
must direct and control the execution of the plan by

 Maintaining it

« Measuring progress and performance
 Recognizing danger signals .

« Taking corrective action to solve problems

At the end of each development phase or build, the manager should reestimate project size, effort,
and schedule for inclusion in the software development/management plan. Earlier estimates should
not be removed from the plan. They provide a record of the planning process that will be needed
for the software development history (Section 4). From this information, the organization can
determine which estimation methods were effective and should be used again.

When it is effectively maintained, the development plan documents the current strategy for the
software development effort. By providing a uniform characterization of the project, the plan can
be invaluable if changes occur in team leadership.

Significant revisions to the plan should not be considered routine maintenance. Effort should be
invested when the plan is written to cnsure that it is realistic, rather than continually modifying it to
agree with actual decisions or experiences. Major shifts in technical approach or usc of
methodologies, for example, should occur only if necessary.

By measuring progress, the manager discovers whether the development/management plan is
effective or not. Section 6 of this handbook addresses the types of metric data that should be
collected and maintained as a rccord of project status.

Metric data alone are not sufficient for gauging the effectivencss of the plan, but by comparing thesc
data to nominal values from related applications, some asscssment is possible. Scction 3 provides
guidelines on resources and staffing that enable some comparison with the actual project data. The
use of a project histories data base, as explained in Scction 6, is another management aid for
measuring progress.

2-5

il

I
iy

[

ir

SECTION 3 — COST ESTIMATING, SCHEDULING,
AND STAFFING

This section presents methods for managing and estimating the resources required for the software
project. Two of the most critical resources are development staff and time. The software
manager is concerned with how much time will be required to complete the project and what
staffing level will be necessary over the development cycle. Both staff and time are estimated using
the procedures discussed in this section. Issues of staff size and composition over the life cycle are
considered. Guidelines are provided for estimating some additional important cost elements such as
computer utilization and system documentation. Reference 4 provides the background and rationale
for software cost estimation.

A cautionary note applies to the cost factors throughout this section. The values summarized in the
appendix to this document reflect SEL experiences in developing software for the flight dynamics
environment. Readers of this handbook should assess how well that summary
matches their own software development environment as an indication of the degree of
confidence to place in the particular cost values presented. A prudent plan is to use the values here
as a first approximation and begin collecting data (see Reference 3) to obtain cost factors that are
representative of the reader's environment.

ESTIMATING DEVELOPMENT COST AND SCHEDULE

An understanding of the expected schedule consumption and effort expenditure in cach phase of the
life cycle is essential to managers. Figure 1-1 and Table 3-1 present these distributions as they
reflect projects monitored by the SEL. Because the cost of developing software is often expressed
in units of effort (e.g., staff-months) to avoid the effects of inflation and salary variation, cost and
effort will be used interchangeably in this section when accounting for the expenditure of staff
resources.

Table 3-1. Distribution of Time Schedule and Effort Over Phases

PERCENT
PHASE OF TIME o DEORT
SCHEDULE
Requirements Analysis 12 6
Preliminary Design 8 8
Detailed Design 15 16
Implementation 30 40
System Testing 20 20
Acceptance Testing 15 10

Although it is the most uncertain, the initial estimate is, in many ways, the most important. It
occurs at such an early stage (after the requirements definition activity) that the temptation is strong
to ignore it; to do so is a mistake. Making the initial estimate has the welcome side effect of leading
the manager to consider the various factors bearing on the size and complexity of the development
task. The initial estimate seeds the cstimation process, serving as a reference value with which to
compare later estimates. In view of this singular role, the following steps are suggested for
achieving an initial estimate

3-1

» Decompose the requirements as far as possible. The decomposition unit at this point will
probably be the subsystem.

« For each decomposition unit, identify similarities with functional units in previously
developed systems and use any historical size data available from these completed systems.

« For decomposition units not strongly related to those of previous projects, use personal
experience to estimate the size of units. :

» Form the size estimate (in lines of code) for the entire project by adding the estimates for all
the decomposition units.

« From historical data and personal experience, estimate the work rate (in lines of code per staff-
month).

« Divide the size estimate by the work rate to obtain an estimate of the effort in staff-months.

« Apply the uncertainty proportion of 1.0 to the size and effort estimates to obtain a range of
possible values (See Figure 3-1 and Table 3-2).

After the initial estimate is made, a minimum of five reestimates (numbered 2 through 6 in

Figure 3-1) arc prescribed. These reestimates are detailed in Table 3-2. They arc based on the
increasing granularity in the representation of the system during the life cycle. The uncerntaintics
from Figure 3-1 are repeated in Table 3-2 because of their importance in transforming the individual
estimates into ranges of estimated values.

The estimation factors in Table 3-2 represent average values for typical development projects
monitored by the SEL. The estimates should be adjusted (before the uncertainty proportion is
applied) when the manager identifies certain aspects of the problem, process, or environment that
vary significantly from customary development conditions. For example, when many modules
within the system will be unusually large or small duc to their specialized function (¢.g., in
gencrating graphics), their estimated size should be based on previously developed modules with
similar functions. In addition, any of the following conditions may strongly affect the cffort
necessary to complete the project: use of a new and dissimilar programming language, dcvclop-
ment by a completely inexperienced team, or the usc of a new and dissimilar computer system.

The effects of some of these conditions have been estimated by the SEL. Table 3-3 provides the
recommended percentage adjustment to the effort estimate due to the complexity of the problem.
Table 3-4 provides an adjustment to the effort estimate for the effect of different icam experience

levels.

REQUIREMENTS ACCEPT-
PHASES SPECIFICATION TEST
ESTIMATES 1 ' 2 3 4 5 6
UNCERTAINTY 1.00 075 ©0.40 0.25 0.10 0.05

(PROPORTION]

a Reestimates should also be made at the end of each build or release of a staged implementation.
Figure 3-1. Cost Estimation Schedule

32

{4 ST

t
I

file

fil ai q s wiE v o

WA

X |

‘ il &

€

& ‘I

Qi

U

{

apy

It |

!

Ril
i

I

¢

il

'
|
1

i

Table 3-2. Procedures

for Reestimating Size, Cost,

and Schedule During

end of
System Tasting

date

Final product size
has been reached

aiready expended
(for effort to
complete)

schedule
expended (for
time to complete)

Development
ESTIMATION DATA SIZE ESTIMATE COST (EFFORT) s:;f,%’"lgl UNCERTANTY
POINT REQUIRED ESTIMATE a {PROPORTION) b
ESTIMATE
end of Number of Use 11000 SLOC Use 3000 hours Use 83 weeks per 0.75
Requirements subsystems per subsystem¢© per subsystemd subsystem per
Analysis staff member
end of Number of units® Use 190 SLOC per Use 52 hours per Use 1.45 weeks 0.40
Preliminary unit¢ unit per unit per staff
Design member d
end of Number of new Compute number of | Use 0.31 hours per | Use .0087 weeks 0.25
Detailed Design and extensively developed units = developed sLocd per developed
modified units (N) N+ 02R SLOC per staff
member &
Number of reused Use developed
units (R) (slightly SLOC =200 x
modified and number of
verbatim developed units
end of Current size in Add 26% to current Add 43% to effort Add 54% to time 0.10
Implementation SLOC size (for growth already expended schedule
during testing) (for effort to expended (for
Effort expended to complete) time to complete)
date
Time schedule
expended to date
Effort expended to Add 11% 10 effort Add 18% to time 0.05

NOTE: Parameter values are derived from three attitude ground support sysiéms (AGSSs): GOES, GRO, and COBE.

8 gchedulerstaffing values are based on a full-ime employee's average work week, with adjustments for holidays, leave, elc. (1864 hours
annually). The values provided can be used to determing either schedule or staff level, depending on which parameter is given.
Of size and effort estimates: Upper limit = (size or effort estimate) x (1.0 + uncertainty). Lower limit = (size or effort estimate)/
(1.0 + uncertainty). To allow for TBD requirements, staff tumover, etc., conservative management practice dictates the use of estimates
that lie between the estimated value and the upper bound. SEL managers, for example, generally plan for a 40% increase in estimated

system size from PDR to project end due 1o changing requirements.

€ Source line of code: a single line of executable or nonexecutable source code (including comments and embedded blank lines).
Estimates of total effort {or time). Subtract effort {or time) already expended to get effort (or time) to complete.
Unit: a named software element that is independently compilable, e.g., a subroutine, subprogram, or function.

Table 3-3. Complexity Guideline

PROJECT ENVIRONMENT EFFORT
TYPE? TYPED MULTIPLIER
od Oid 1.0
Old New 1.4
New Old 1.4
- New New 2.3

3 Application, e.g., orbit determination, simulator. The project (or portion of the project) type is old when the

organization has more than 2 years experience with it.
Computing environment, e.g., IBM 4341, VAX 8810. The environment type is old when the organization has

more than 2 years of experience with it on average.

Table 3-4. Development Team Experience Guideline

T YA | ErEoRT
MULTIPLIER
EXPERIENCEZ
10 0.5
8 0.6
6 0.8
4 1.0
2 1.4
1 2.6

dAverage of team member's years of application experience weighted by member’s participation on the team.
Application experience is defined as prior work on similar applications, e.g., attitude and orbit determination.

Member's participation is defined as time spent working on the project as a proportion of total project effort.

PROJECT STAFFING

Although the average level of staff is provided by the effort estimate, more specific guidelines are
available for three aspects of staffing — team size, staffing pattern, and team
composition. Typical staffing profiles are provided in Section 6. Table 3-5 presents guidelines
for team size in terms of the team leader's experience. Table 3-6 addresses team composition,
listing recommended percentages of senior personnel and analysts.

34

I A

L

0]

‘ I

i

gl %

€l

U0 .

WG

@il

Wl xi

[

e
hll

il

§

(]

(1

r

Table 3-5. Team Size Guideline

TEAM LEADER: MAXIMUM
MINIMUM YEARS OF EXPERIENCE® TEAM SIZE
EXCLUDING
Applicable | Organization | Leadership TEAM LEADER
) 6 4 3 7+2
5 3 1 4+2
4 2 0 2+1
3ppplicable = Applicable experience (requirements definition, analysis, development, maintenance, and

operation).
Organization = Experience with the organization and its development methadology.
Leadership = Experience as a team leader or manager.

Examples: A team leader with no leadership experience should not be asked to manage a team with
greater than three members. A team of seven to nine members should be provided with a leader who has
six years or more of experience with the application, primarily within the organization.

Table 3-6. Guideline for Development Team Composition

PROJECT | ENVIRONMENT PR CanIOn | PERCENTAGE .
TYPE TYPE PERSONNELP | OF ANALYSTS
old old 25-33 25-33
Old New 33-50 25-33
New oid 33-50 33-50
New ~ New 50-67 33-50

aThe project and environment types are old when the development team has, on average, more than
2 years experience with them.
Senior personnel are those with more than § years of experience in development-related activities.

€ Analysts are those personnel who have training and an educational background in problem definition
and solution with the application (project type).

OTHER SOFTWARE DEVELOPMENT COSTS

Estimates and guidelines are presented for other software cost clements: computer utilization,
system documentation, software rehosting, software reuse, and software
maintenance,

Cost of Computer Utilization

This cost may be expressed in terms of system size. The estimate of total hours of CPU time, H, in
a NAS 8040 environment is H = 0.0008L, where L is the number of lines of source code in the
system. (The NAS 8040 is comparable to an IBM 3033). The estimated number of runs, R, in the
same SEL environment is R = 0.29L. Figures 3-2 and 3-3 show computer utilization over the lifc
cycles of recent projects monitored by the SEL.

3-5

{

Requirements Preliminary Detailed . System Acceplance
Analysis Design Design Implementation Test Test
' : : ; ' —
1 i 1 1 1 -
[} H] 1 1
GJ‘ [} 1 [} 1 ¥
%]] v 1 1 1
] ‘ i 1 1 1 _
g : : : 1 1 =
% 1 ' 1 1 1 L
W 200% = 1 ¥ 1 1 I
2 ' ' 1 ' '
W ' 1 ' f ' =
g ' ' ' i "
i 1 [} 1 1 [} -
S v 1 ' 1 1
<C L} I] I 1
W 1 1 1]]
2 : : ' ‘ '
L} I 1
E] 1 ' ' 1 ;
: ‘ ‘ AVERAGE WEEKLY COMPUTER USE -
100% b e - ——— pm———————- -REVaE e AR A LUR e ===
o 1 ' 1 []
W 1 1 1]]
(7] L] 1 1] i
g 1 T ¥ 1 ’
1]
& . | : : :
]
2 ' ' ' ' '
3 ' 7 : ' ' =
o —
' : : : : -
L T L 1 T T 1 1
o 25 50 75 100 —
PERCENT OF DEVELOPMENT SCHEDULE o
a
Figure 3-2. Typical Computer Utilization Profile (FORTRAN Projects
I J
;
-
Require- Pre- . 2
s ey el mgenenaion Sgom dersponc -
» In comparison to FORTRAN, i ' ' " '
Ada projects utilize a larger 8 i ; " ' : .z
percentage of CPU early in % 200% | ‘ ' ' " '
the life cycle H ' ' ' ' :
fé . ' ‘ : =4
+ PDL and prolog are compiled £ E E E E E -
during the design phases & 1 1 1 ! '
] 1 AVERAGE WEEKLY COMPUTER USE]
g wn fpm—pr— = ——==X-r—-—- -
. . . a
« Integration testing is g : ' : : : =
conducted throughout the g : : ' : " L4
implementation phase § ' . i ' ' 7
L : ' ' =
| E— 1 T -1 . 1 =
[} 25 50 75 100 v
PERCENT OF DEVELOPMENT SCHEDULE
. . (3 34 13 . %
Figure 3-3. Typical Computer Utilization Profile (Ada Proj ects)
-
3-6 =
]

tr

Cost of System Documentation

Documentation cost is included in the cost estimates of Table 3-2. The average quantity of
documentation for a given software development project can be estimated using the formula

P = 120 + 0.026 L,where P is pages of documentation and L is source lines of code. This cost
covers a requirements analysis report, design documents, system description, and user's guide.
For a separate documentation task, 4 staff-hours per page may be used to estimate the total cost of
system documentation.

Cost of Rehosting Software
Rehosting means modifying existing software to operate on a new computer systcm. Testing will
require a high percentage of the total effort of any rehost project. Table 3-7 provides the cost of

rehosting high-level language software as a percentage of the original development cost in staff-
hours.

Table 3-7. Cost of Rehosting Software

a b
SYSTEM'S RELATIVE COST TESTING EFFORTS NEW
RELATIONSHIP | FORTRAN ADA FORTRAN ADA CODE®
Compatibied 10-16 5-11 55-70 36-40 0-3
Similar © 15-18 10-15f 45-55f 30-35f 4-14
Dissimilar9 20-40 18-30 40-50 25-30 15-32

apgrcent of original development cost.
Percent of total rehosting cost.
Cpercent of code that must be newly developed or extensively modified.
Compatible: Systems designed to be plug compatible, (e.g., IBM S$/360 and 4341).
©Similar: Some key architectural characteristics, {e.g., word size) are shared and some are different (e.g.,
IBM 4341 and VAX 8810).
Data extracted from Reference 5.
9IDissimilar: Differences in most characteristics of architecture and organization (e.g., IBM S/360 and PDP

11/70).
Cost of Reusing Software

Reusable modules should be identified during the design stage. As shown in Table 3-8, the
estimated cost to reusc a module depends on the extent of the changes.

37 .

Table 3-8. Cost of Reusing Software

MODULE MSS%EE%TC?;DE RELATIVE
CLASSIFICATION | mODIFIED OR ADDED coST
New 100 100
Extensively Modified >25 100
Slightly Modified 1-25 20
oid 0 20

3Cost as a percent of the cost to develop a new module.

Cost of Software Maintenance

Software maintenance refers to three types of activities occurring after the software is delivered —
correcting defects detected during operational use, making enhancements that improve or
increase functionality, and adapting the software to changes in the operational environment,

such as a new operating system or compiler.

Expected maintenance costs vary widely, depending on the quality of the delivered software and the
stability of the operational environment. In the environment monitored by the SEL, a large
percentage of the maintenance effort of FORTRAN systems is expended in enhancing the system.
This includes modifying existing components, retesting, regenerating, and recertifying the
software. Few new components are added, and new documentation is generally not produced.
Average annual maintenance cffort ranges from 1 t0 23% of the total development cost (in staff-
hours) of the original system. Total maintcnance over the life of the projcct costs from 1.5 to 24
staff-years per million LOC (sce Refcrence 6).

Because maintenance effort varies so widely, the SEL recommends that estimates of the annual cost
of maintenance be adjusted based on project type. The SEL uses 5% of total development cost as
the estimate of annual maintenance of stable systems with a short life expectancy (less than 4
years). Annual maintenance of larger, longer lived systems is estimated at 15% of development

cost.

3-8

I |

0 ¢ ®my s@ @« LA €U mi &5 Q0 g 4 ([|

<

1

!

O

T

{

!

!

"]

SECTION 4—KEY DOCUMENTS AND
DELIVERABLES

Documents and deliverables provide an ongoing system description and serve as key indicators of
progress. They are a central concem of software managers because they mark the transitions
between life cycle phases. The following documents and deliverables are of specific interest to the
software manager:

» Requirements and functional specifications » Test plans

 Operations concept document « User's guide

« Software development/management plan « System description

» Requirements analysis report « Software development history

» Preliminary design report « System delivery tape — software

« Detailed design document product and supporting files and tools

The documents and deliverables associated with a software development project are keyed to life
cycle phases. Figure 4-1 shows the phases when they should be completed. In some instances,
preliminary versions are prepared, followed by updates. For any point in the life cycle, the
software manager can determine what documents and deliverables should be in preparation. This
section presents the recommended document contents as well as management guidelines for
evaluating completed documents. '

AT END OF
PHASE BELOW DOCUMENTS AND DEIVERABLES
R T REQUIREMENTS ~ OPERATIONS
Dggl;:-nrg:;EN S | anoFuncrionat CONCEPT
SPECIFICATIONS ~ DOCUMENT
(PRELIMINARY) SOFTWARE REQUIREMENTS ’ ACCEPTANCE SOFTWARE
DEVELOPMENT/ ANALYSIS TESTPLAN DEVELOPMENT

REQUIREMENTS (BASELINED) MANAGEMENT REPORT (DRAFT) HISTORY
ANALYSIS PLAN . (ORAFT}
PRELIMINARY PREUMINARY +
DESIGN (SPEC MODS) (UP:TE' DESIGN REPORT (UPDATE)
DETAILED (SPEC MODS) (UPDATE) DETAILED BULD TEST ~ ANALYTICAL 'UPtY
DESIGN DESIGN DOCUMENT ® PLANS TEST PLAN { 8

¥ v g ~ v v v

USER'S GUIDE CODE AND SYSTEM
IMPLEMENTATION (FINAL} (UPDATE} (DRAFT) SUPPORTING RESULTS rporpay (UPDATE) (UPDATE)
FILES
* SYSTEM * * J‘ *
SYSTEM (FINALY DESCRIPTION RESULTS (FINAL) (UPDATE)
TEST (UPDATE) (ORAFT) (UPDATE) {
ACCEPTANCE * * 4 *
TEST (FINAL) (FINAY FINAL SYSTEM RESULTS (FINAL
DELVERY TAPE

aThe preliminary design report evolves into the detailed design document. Descriptive material in the detailed design document provides the basis for the system
description. Updated prologs and program design language (PDL) from the detailed design are delivered with the final system and operations scenarios and
performance information are inciuded in the users guide.

Figure 4-1. Key Documents and Deliverables by Phase

SUGGESTED DOCUMENT CONTENTS

For each document, a suggested format and contents are given (sce Figures 4-2 through 4-10), with
the exception of the software development/management plan, which was covered scparately in
Section 2. The actual contents of the documents may vary from the outlines presented here.
Specific features of the application environment may lead the manager to exercisc judgment in
selecting the malerial that is most appropriate and effective. This allowance for flexibility should be
understood when examining the following figures.

4-1

REQUIREMENTS AND FUNCTIONAL SPECIFICATIONS

This document is produced by the requirements definition team as the key product of the
requirements definition phase. It is often published in multiple volumes: volume 1 defines the
requirements, volume 2 contains the functional specifications, and volume 3 provides
mathematical specifications. The document is distributed prior to the SRR. Functional
specifications are updated during requirements analysis and baselined following the SSR.

1. Introduction
a. Purpose and background of the project
b. Document organization

2. System overview
a. Overall system concept
b. Expected operational environment (hardware, peripherals, etc.)
c. High-level diagrams of the system showing the external interfaces and data flows

d. Overview of high-level requirements

3. Requirements — functional, operational (interface, resource, performance, etc.), and data

requirements v

a. Numbered list of high-level requirements with their respective derived requirements
{derived requirements are not explicitly called out in the requirements document but
represent constraints, limitations, or implications that must be satisfied to achieve the
explicitly stated requirements)

b. For each requirement:
{1} Requirement number and name
(2) Description of the requirement
(3) Reference source for the requirement, distinguishing derived from explicit

requirements

4) Interfaces to other major functions or external entities
{5) Performance specifications — frequency, response time, accuracy, etc.

4. Functional specifications
Discussion and diagrams showing the functional hierarchy of the system

a.
b. Description and data flow diagrams of the basic functions of each major subsystem
c. Description of general conventions used {mathematical symbols, units of measure, etc.}
d. Description of each basic function

(1} Input

(2} Process — detailed description on how this function should work

{3} Output

{4) ldentification of candidate reusable software
(5) Acceptance criteria for verifying satisfaction of related requirements
6) Data dictionary — indicating name of item, definition, structural composition of the

item, item range, item type

5. Mapping of functional specifications to requirements — also distinguishes project-
unique requirements from standard requirements for the project type (AGSS, dynamics

simulator, etc.)

6. Mathematical specifications — formulae and algorithm descriptions to be used in
implementing the computational functions of the system
a. Overview of each major algorithm
b. Detailed formulae for each major algorithm

Figure 4-2. Requirements and Functional Specifications Contents

i e 8

| NI

"
H”I I‘ ‘\

Ny du G «

&

11

K

) IR |

;i ou

gl

|

il

U

OPERATIONS CONCEPT DOCUMENT

This document provides a top-down view of the system from the user’s perspective by describing
the behavior of the system in terms of operational methods and scenarios. It should be provided
by analysts to the development team by the end of the requirements definition phase. The
suggested contents are as follows:

1. Introduction, including purpose and background of the system
a. Overall system concept
b. System overview with high-level diagrams showing the external interfaces and data flow
c. Discussion and diagrams showing the functional hierarchy of the system
d. Document organization

2. Operational environment, description and high-level diagrams of the environment in
which the system will be operated
a. Overview of operating scenarios
b. Description and diagrams of the system configuration (hardware and software)
¢. Description of the responsibilities of the operations personnel

3. Operational modes
a. Discussion of the system's modes of operation (e.g., critical vs. normal, launch vs. on-orbit
operations)
b. Volume and frequency of data to be processed in each mode
c. Order, frequency, and type (e.g., batch or interactive) of operations in each mode

4. Operational description of each major function or object in the system

a. Description and high-level diagrams of each major operational scenario showing all input,

output, and critical control sequences

b. Description of the input data, including the format and limitations of the input. Sample
screens (i.e., displays, menus, popup windows, etc.) depicting the state of the function
before receiving the input data should also be included
Process — high-level description on how this function will work
Description of the output data, including the format and limitations of the output.
Samples {i.e., displays, reports, screens, plots, etc) showing the results after processing
the input should also be included
. e. Description of status and prompt messages generated during processing, including

guidelines for user responses to any critical messages

ae

5. Requirements traceability matrix mapping each operational scenario to requirements

Figure 4-3. Operations Concept Document Contents

43

REQUIREMENTS ANALYSIS REPORT

This report is prepared by the development team at the conclusion of the requirements analysis
phase. It summarizes the results of requirements analysis and establishes a basis for beginning
preliminary design. The suggested contents are as follows:

1. Introduction — purpose and background of the project, overall system concepts, and
document overview

2. Reuse proposal — key reuse candidates and overall architectural concept for the system

3. Operations overview — updates to operations concepts resulting from work performed

during the requirements analysis phase
a. Updated operations scenarios
b. Operational modes — including volume and frequency of data to be processed in each

mode, order and type of operations, etc.
c. Updated descriptions of input, output, and messages

4. Specification analysis
a. Summary of classifications {mandatory, derived, "wish list®, information only, or TBD)

assigned to requirements and functional specifications

b. Problematic specifications — identification and discussion of conflicting, ambiguous,
infeasible, untestable, and TBD requirements and specifications

¢. Unresolved requirements/operations issues, including the dates by which resolutions are

needed
d. Analysis of mathematical algorithms

5. System constraints
a. Hardware availability — execution, storage, peripherals
b. Operating system limitations
¢. Support software limitations

6. Development assumptions

7. Risks, both to costs and schedules. These should include risks related to TBD or changing
requirements, as well as technical risks

8. Prototyping efforts needed to resolve technical risks, including the goals and schedule for
each prototyping effort

9. Data flow or object-oriented diagrams — resuits of all functional decomposition or
object-oriented analysis of the requirements performed during the requirements analysis

phase

10. Data dictionary — for the updated processes, data flows, and objects shown in the
diagrams

Figure 4-4. Requirements Analysis Report Contents

44

|

ol

B u

Uil

@i

@il

(g

L[]

gl

-

nme

(

S

{re

"
]

[

PRELIMINARY DESIGN REPORT

This report is prepared by the development team as the primary product of the preliminary design
phase. It presents the functional description of the system and forms the basis for the detailed
design document. The suggested contents are as follows: .

1. Introduction — purpose and background of the project, overall system concepts, and
document overview

2. Design overview

pe o

Paal

g.

Design drivers and their order of importance (e.g., performance, reliability, hardware,

memory considerations, operating system limitations, language considerations,etc.)

Results of reuse tradeoff analyses; the reuse strategy

Critique of alternative designs

Discussion and high-level diagrams of the selected system design, showing hardware

interfaces, external data interfaces, interconnections among subsystems, and data flow

A traceability matrix of the subsystems against the requirements

Design status

(1) List of constraints, concerns, and problem areas and their effects on the design

{2) List of assumptions and possible effects on design if they are wrong)

{3) List of TBD requirements and an assessment of their effect on system size, required
effort, cost, and schedule

{4) ICD status

(5) Status of prototyping efforts

Development environment (i.e., hardware, peripheral devices, etc.)

3. Operations overview

b.

Operations scenarios/scripts (one for each major product that is generated). Includes the
form and volume of the product and the frequency of generation. Panels and displays
should be annotated to show what various selections will do and should be traced to a
subsystem

System performance considerations

4. Design description for each subsystem or major functional breakdown:

a.

b.
c

Discussion and high-level diagrams of subsystem, including interfaces, data flow, and
communications for each processing mode

High-level description of input and output

High-level description of processing keyed to operator-specified input and actions in
terms of points of control, functions performed, and results obtained (both normal and
abnormal, i.e., error processing and recovery)

Structure charts or object-oriented diagrams expanded to two levels below the
subsystem driver

Prologs {specifying the module's purpose, operation, calling sequence arguments,
external references, etc; Ada projects should provide package specifications for the
principle objects in the system) and program design language (PDL) for each module
through the first level below subsystem driver. (Prologs and PDL are normally published
in a separate volume because of size.)

5. Data interfaces for each internal and external interface:

a.

b.

Description, including name, function, frequency, coordinates, units, and computer type,
length, and representation

Format

{1} Organization and description of files {i.e., data files, tape, etc.)

{2) Layout of frames, samples, records, blocks, and/or transmissions

{3) Storage requirements

Figure 4-5. Preliminary Design Report Contents

4-5

DETAILED DESIGN DOCUMENT

This document is the primary product of the detailed design phase. To complete the document,
the development team updates similar material from the preliminary design report and adds
greater detail. The suggested contents are as follows: :

1. Introduction — purpose and background of the project, overall system concepts, and
document overview

2. Design overview

a.
b.
c.

d.

f

Design drivers and their order of importance

Reuse strategy
Discussion and high-level diagrams of the selected system design, showing hardware

interfaces, external data interfaces, interconnections among subsystems, and data flow
Traceability matrix of major components against requirements and functional

specifications

. Design status

(1) List of constraints, concerns, and problem areas and their effects on the design

(2) List of assumptions and possible effects on design if they are wrong

{3) List of TBD requirements and an assessment of their effect on system size, required
effort, cost, and schedule

{4) ICD status

(5} Status of prototyping efforts

Development environment

3. Operations overview

a.
b.

Operations scenarios/scripts
System performance considerations

4. Design description for each subsystem or major functional breakdown:

a.
b.
c.
d.
e. Detailed description of processing keyed to operator-specified input and actions in

baal

R T

Overall subsystem capability

Assumptions about and restrictions to processing in each mode

Discussion and high-level diagrams of subsystem, including interfaces, data flow, and
communications for each processing mode

High-level description of input and output

terms of points of control, functions performed, and results obtained {both normal and
abnormal, i.e., error processing and recovery)

Structure charts or object-oriented diagrams expanded to the subprogram level,
showing interfaces, data flow, interactive control, interactive input and output, and
hardcopy output

Internal storage requirements, i.e., description of arrays, their size, their data capacity in
all processing modes, and implied limitations of processing

Detailed input and output specifications

{1) Processing control parameters, e.g., NAMELISTS

{2) Facsimiles of graphic displays for interactive graphic systems

{3) Facsimiles of hardcopy output

List of numbered error messages with description of system's and user's actions
Description of COMMON areas or other global data structures

Prologs or Ada package specifications and PDL for each unit (normally kept in a separate
document because of size}

5. Data interfaces—updated from description in preliminary design report

Figure 4-6. Detailed Design Document Contents

4-6

I |

q{

Kl

WG

Qi

qi

&il

i

il

@ & 49

gl

 $i)

&

{

TEST PLANS
BUILD/RELEASE TEST PLAN

« Prepared by the system test team during the detailed design phase

» Designed to test the functional capability of each build or release {functional subsets
of the complete software system) as defined in the software development/management
plan and to identify limitations

« Executed during the implementation phase by the system test team as soon as unit
testing and integration of each build/release is complete

ANALYTICAL TEST PLAN

« Prepared prior to the implementation phase by the analysts who will use the system

+ Designed to assist developers in verifying the results of complex mathematical and
astronomical calculations performed by the system

« Unit level tests are executed during the implementation phase by developers; end-to-end
tests are executed as a part of system testing

SYSTEM TEST PLAN

+ Prepared by the system test team during the implementation phase

« Designed to verify the system's end-to-end processing capability, as specified in the
requirements document, and to identify limitations

+ Executed during the system testing phase by the system test team

ACCEPTANCE TEST PLAN

« Drafted by the acceptance test team following the requirements definition phase, based on
the requirements and functional specifications document

« Designed to demonstrate the system's compliance with the requirements and functional
specifications

+ Executed during the acceptance testing phase by the acceptance test team

TEST PLAN OUTLINE

1. Introduction, including purpose, type and level of testing, and schedule

2. Traceability matrix mapping each requirement and functional specification to one or more
test cases

3. Test description (normally the length need not exceed 1to 2 pages) for each test

Purpose of test, i.e., specific capabilities or requirements tested

Detailed specification of input

Required environment, e.g., data sets required, computer hardware necessary

Operational procedure, i.e., how to do the test

Detailed specification of output, i.e., the expected results

Criteria for determining whether or not the test results are acceptable

Section for discussion of results, i.e., for explaining deviations from expected results and

identifying the cause of the deviation or for justifying the deviation

@moacgue

Figure 4-7. Contents of Test Plans

- USER'S GUIDE

The development team begins preparation of the user's guide during the implementation phase.
Items 1 and 2, and portions of item 3, represent updated material from the detailed design
document, although some rewriting is expected to make it more accessible to the user. A draftis
completed by the end of the implementation phase and is evaluated during system testing. At
the beginning of the acceptance test phase, an updated version is supplied to the acceptance test
team for evaluation. Corrections are incorporated, and a final revision is produced at the end of
the phase. The suggested contents are as follows:

1. Introduction
a. Overview of the system, including purpose and background
b. Document organization
c. Discussion and high-level diagrams of system showing hardware interfaces, external
data interfaces, software architecture, and data flow

2. Operations overview
a. Operations scenarios/scripts
b. Overview and hierarchy of displays, windows, menus, reports, etc.
¢. System performance considerations

3. Description for each subsystem or major functional capability:

a. Overall subsystem capability

b. Assumptions about and restrictions to processing in each mode

c. Discussion and high-level diagrams of subsystems, including interfaces, data flow, and
communications for each processing mode

d. High-level description of input and output

e. Detailed description of processing keyed to operator-specified input and actions in terms
of points of control, functions performed, and results obtained (both normal and
abnormal, i.e., error processing and recovery)

f. For interactive subsystems, facsimiles of displays in the order in which they are
generated

g. Facsimiles of hardcopy output in the order in which it is produced, annotated to show
what parameters control it

h. List of numbered messages with explanation of system's and user's actions annotated to
show the subroutines that issue the message

4. Requirements for execution
a. Resources — discussion, high-level diagrams, and tables for system and subsystems
(1t Hardware
(2) Data definitions, i.e., data groupings and names
{3) Peripheral space considerations — data storage and printout
8 Memory considerations — program storage, array storage, and data set buffers
{(5) Timing considerations
{a) Central processing unit (CPU) time in terms of samples and cycles processed
(b} /O time in terms of data sets used and type of processing
) Wall-clock time in terms of samples and cycles processed
b. Run information — control statements for various processing modes
c. Control parameter information — by subsystem, detailed description of all control
parameters (e.g., NAMELISTS), including name, computer type, length, and
representation, and description of parameter with valid values, default value, units, and
relationship to other parameters

Figure 4-8. User's Guide Contents

48

I

T |

I

L il

A 1

i)

o]

|

[
i

Wil

a

I

|
i

B €

1

e

('

("1

!

1.

2.

10.

SYSTEM DESCRIPTION

During the implementation phase, the development team begins work on the system description by updating
data flow/object diagrams and structure charts from the detailed design. A draft of the document is
completed during the system testing phase and a final version is produced by the end of acceptance testing.
The suggested contents are as follows:

Introduction — purpose and background of the project, overall system concepts, and document
overview

System overview

a. Overview of operations scenarios

b. Design drivers (e.g., performance considerations) and their order of importance

c. Reuse strategy

d. Resuits of prototyping efforts

e. Discussion and high-level diagrams of the selected system design, showing hardware interfaces,

external data interfaces, interconnections among subsystems, and data flow
f. Traceability matrix of major components against requirements and functional specifications

Description of each subsystem or major functional breakdown:

a. Overall subsystem capability

b. Assumptions about and restrictions to processing in each mode

c. Discussion and high-level diagrams of subsystem, including interfaces, data flow, and
communications for each processing mode

d. High-level description of input and output

e. Structure charts or object-oriented diagrams expanded to the subprogram level, showing interfaces,

data flow, interactive control, interactive input and output, and hardcopy output

Requirements for creation
Resources — discussion, high-level diagrams, and tables for system and subsystems
(1} Hardware
{2} Support data sets
(3) Peripheral space considerations — source code storage, scratch space, and printout
(4) Memory considerations — program generation storage and data set buffers
(5) Timing considerations
{a} CPU time in terms of compile, buiid, and execute benchmark test
(o) 1/0 time in terms of the steps to create the system
b. Creation information — control statements for various steps
c. Program structure information — control statements for overiaying or loading

Detailed description of input and output by step — source code libraries for system and
subsystems, object code libraries, execution code libraries, and support libraries

Internal storage requirements — description of arrays, their size, their data capacity in all
processing modes, and implied limitations of processing

Data interfaces for each internal and external interface:

a. Description, including name, function, frequency, coordinates, units, computer type, length, and
representation

b. Format — organization (e.g., indexed), transfer medium (e.g., disk), layout of frames
{samples, records, blocks, and/or transmissions), and storage requirements

Description of COMMON blocks, including focations of any hard-coded physical constants
Prologs/package spacifications and PDL for each subroutine (separate volume)

Alphabetical list of subroutines from support data sets, including a description of each
subroutine's function and a reference to the support data set from which it comes

Figure 4-9. System Description Contents

49

SOFTWARE DEVELOPMENT HISTORY

Material for the development history is collected by the project leader throughout the life of the
project. At the end of the requirements analysis phase, project data and early lessons learned
are compiled into an initial draft. The draft is expanded and refined at the end of each
subsequent phase so that, by the end of the project, all relevant material has been collected and
recorded. The final version of the software development history is produced within 1 month of
software acceptance. The suggested contents are as follows:

1. Introduction — purpose of system, customer of system, key requirements, development
machines and language

2. Historical overview by phase — includes products produced, milestones and other key
events, phase duration, important approaches and decisions, staffing information, and
special problems

Requirements definition — if requirements were produced by the software development

a.
team, this section provides an historical overview of the requirements definition phase.
Otherwise, it supplies information about the origin and documentation of the system'’s
requirements and functional specifications

b. Requirements analysis

c. Detailed design

d. Implementation — coding through integration for each build/release

e. System testing

f. Acceptance testing

3. Project data

a. Personnel and organizational structure — list of project participants, their roles, and
organizational affiliation. Includes a description of the duties of each role (e.g., analyst,
developer, section manager) and a staffing profile over the life of the project -

b. Schedule — table of key dates in the development of the project and a chart showing
each estimate (original plus reestimates at each phase end) vs. actual schedule

c. Project characteristics

{1) Standard tables of the following numbers: subsystems; total, new, and reused
components; total, new, adapted and reused {verbatim) SLOC, statements, and
executables; total, managerial, programmer, and support effort; total productivity

{2) Standard graphs or charts of the following numbers: project growth and change
histories; development effort by phase; development effort by activity; CPU usage;
system test profile; error rates; original size estimate plus each reestimate vs. final
system size; original effort estimate plus each reestimate vs. actual effort required

(3) Subjective evaluation data for the project — copy of the SEL subjective evaluation
form (SEF) or report of SEF data from the project data base (see Reference 7)

4. Lessons learned — descriptions of the major strengths and weaknesses of the
development process and product, what was learned from them, and what specific
recommendations can be made to improve future projects

a.

b.

~oao

Planning — development plan timeliness and usefulness, adherence to development
plan, personnel adequacy {(number and quality), etc.

Requirements — completeness and adequacy for design, change history and stability,
and clarity (i.e., were there misinterpretations?), etc.

Development — lessons learned in design, code and unit testing

Testing — lessons learned in system and acceptance testing

Product assurance — adherence to standards and practices; QA and CM lessons learned
New technology — impact of any new technology used by the project on costs,
schedules, quality, etc. as viewed by both developers and managers, recommendations

for future use of the technology

Figure 4-10. Software Development History Contents

r

4-10

I

I

0! 5

il

i,

il

Uil

1. &

[

€l

a |

L

|

Q|

1

GUIDELINES FOR EVALUATING COMPLETED DOCUMENTS

The software manager will be critically reviewing completed documents. The general guidelines
presented here involve checking the degree to which five basic attributes of a successful document
are present in the document under review:

Accuracy — Is the document correct? Are there obvious mistakes? Are assumptions
about resources and environment valid? Is there evidence of a lack of understanding of
important aspects of the problem or process?

Clarity — Is the document expressed in a form that is accessible and understandable? Are
tables and diagrams used where possible instead of text?

Completeness — Is the right information included, considering the purpose of the
document? Have any necessary items been omitted? When the document reflects
continuing development from a previous document, does it contain all the elements from
the earlier document?

Consistency — Do passages in the document contradict other passages in the same
document? Do all symbols conform to a standard notation?

Level of detail — Do the contents reflect a level of detail appropriate to the purpose of
the document? Is more elaboration needed in a specific area?

The following questions can be used to analyze the document for the existence and quality of
essential features.

Requirements and Functional Specifications

Are all assumptions about requirements documented in the functional specifications?

Are all requirements and functional specifications testable as written?

Are performance requirements included?

Is it clear which requirements and specifications are identical or closely similar to those in
existing systems?

Operations Concept Document

Are operating scenarios realistic?
Is it clear which operations concepts map to which requirements?

Requirements Analysis Report

' Has the effect of TBD requirements been underestimated?
Are there additional sources of reusable software?
Are resources sufficient?

4-11

Preliminary Design Report

Have all functional specifications been allocated to subsystems?
Are all interfaces understood?

Is the rationale for the chosen design justifiable?

Is the subsystem partitioning sensible?

Detailed Design Document

Are baseline diagrams provided to the subroutine level?

Are all external files described in content and format (to the byte level)?

Are all TBD requirements resolved?

If the design is followed, will the system meet its requirements?

Is there evidence of information-hiding, i.e., localizing the data usage and access?
Is the coupling between modules low, and are the modules cohesive?

Test Plans

Do the tests describe expected results?

Are the tests repeatable, i.e., do the test specifications adequately describe the setup and

environment so that two different people would produce the same tests from the test
descriptions?

How well do the tests cover the range of capabilities?

Are there explicit criteria for determining whether test results are acceptable?

Is the schedule reasonable in light of test resources?

User’s Guide

Will it be understandable to the users?

Is it organized so that it can serve different user populations simultaneously?
Are examples provided?

Is input described in sufficient detail?

Are status messages, error messages, and recovery explained?

System Description

Is the document structured to accommodate both those who want only a high-level view
of the system and those who seek a detailed view?

Is the scope of the system clear?

Are the relationships to other systems explained?

Software Development History

Is there an update list that shows when estimates of system size, effort, schedule, and cost

were made?
Have all of the problem areas been discussed?

4-12

ml 1y
Wikl g

1

i

ull

| i

@

i

Wi €N =y € i

€]

B I N I

iF

i
i

i
i

i sl m

e il

SECTION 5 — VERIFICATION, TESTING, AND
CERTIFICATION

This section summarizes recommended methods of verifying, validating, and certifying the
software development process and product. Both testing and non-testing verification techniques are
used to evaluate the software's function and performance so that problems can be repaired before
their effects become too costly. Certification subjects the product and process to independent
inspection and evaluation.

CODE READING

Code reading is a systematic procedure for reading and understanding the operation of a program.
Studies have shown that code reading detects more errors at a lower cost than either functional
testing or structural testing alone (Reference 8). In the experience of the SEL, the most powerful
verification combination is human inspection followed by functional testing.

Purpose — Code reading is designed to verify that the code of a program unit is correct
with respect to its intended function.

Participants — Code must be read by an experienced developer who is not the original
programmer. The SEL recommends that two code readers be assigned to each unit, since
studies have shown that only one quarter of the total errors found in code reading are found
by both readers independently (Reference 9).

Activities — All developed code must be read. Unless the project is using cleanroom
methodology (Reference 9), the code should be cleanly compiled beforehand. Each reader
reviews the code independently. In addition to checking functionality, the reader ensurcs
the code is consistent with the design specified in the prolog and PDL and that it conforms
to standards and conventions. Detailed guidelines for code reading are provided in
Section 2 of Reference 10.

Monitoring — To measure progress, use total number of units coded versus number
successfully read.

UNIT TESTING

Unit testing takes place only after the code has been read. All newly developed or extensively
modified units must be verified via unit testing. (NQTE: Ongoing research efforts are examining
significantly different approaches to testing at the unit level; see Reference 9).

A spectrum of formality and rigor exists for unit testing and integration. Especially complex or
critical units may need to be tested in isolation, using test drivers and stubs. In other cases, it may
be more efficient to conduct unit testing on a collection of related units, such as an Ada package.
The manager should select the level of formality and rigor that is most cost effective for the project.

Purpose — Unit testing verifies the logic, computations/functionality, and error handling
of a unit.

Plan — Usually written by the unit developer, unit test plans are informal. Procedures for
testing complex algorithms at the unit level are contained in the analytical test plan.

5-1

Participants — The unit developer generally tests the unit, unless the cleanroom method
with its separate test team is used (see Reference 9).

Activities — The tester prepares test data and any necessary drivers or stubs. He/she
then executes the test plan, verifying all logic paths, error conditions, and boundary
conditions. Test results are reviewed for accuracy and completeness by the task leader or
designated technical authority.

Monitoring — Use number of units planned versus number successfully unit tested to
measure progress; track number of errors found to gauge software reliability.

INTEGRATION TESTING

Purpose — Integration testing verifies the internal integrity of a collection of logically
related units (called a module) and checks the module’s external interfaces with other
modules, data files, external input and output, etc.

Plan — Although a formal test plan is generally not required, integration testing is more
carefully controlled than unit testing.

Participants — Integration testing is usually performed by the members of the
~ development tcam responsible for the modules being integrated.

Activities — During integration testing, the software is slowly built up by adding a few
units at a time to a core of modules that have already been integrated. Integration may
follow a top-down approach, in which lower level modules are added to the top-level
driver level by level. Altemnatively, an end-to-end functional path, or thread, may bc
constructed, to which other modules are then added.

Monitoring — Use number of units planned versus number successfully integrated (o
measure progress; track number of errors found to gauge software reliability.

BUILD/RELEASE TESTING

A build is a portion of a software system that satisfics, wholly or in part, a subset of the

requirements. A build that is acceptance tested and subsequently delivered for operational usc is

called a release. Build/release testing is used when the size of the system dictates that it be
implemented in multiple stages.

Purpose — Build testing verifies that the integrated software fulfills a predetermined
subset of functional or operational system requircments.

Plan — The tests to be executed are defined in a build/release test plan. Build tests are
often subsets of system tests (see Figure 4-7).

Participants — Build testing is generally performed and evaluated by members of the
system test tecam.

Activities — The activities conducted during build testing are basically the same as those

of system testing.

5-2

. 4 Ll

L I

il

&l

gl

([

|

L)

i |

[

@i ¢

il

[N

1
il

!

(7

Monitoring — Use number of test cases identified versus number successfully tested to
measure progress; formally track errors found to gauge reliability; track effort required to
fix to predict maintainability.

SYSTEM TESTING

System testing verifies the full, end-to-end capabilities of the system. The system testing- phase
follows the implementation test phase; it begins after the last build of the system has been
successfully completed.

Where high reliability software is required for a particular mission application (e.g., flight or
significant real-time software), it is recommended that system testing be planned and performed by
an independent verification and validation (IV&V) team. Experience within the SEL cnvironment
has found the use of IV&V adds between 5 and 15 percent to total project costs.

Purpose — System testing verifies that the full system satisfies its functional and
operational requirements. The system must be demonstrated to be both functionally
complete and robust before it can be turned over to acceptance testers.

Plan — The test and verification approach is specified in the system test plan (Figure 4-7).
A system test plan may be developed based on an analytical test plan (designed to show
how the computational accuracy of the system can be verified) or based on the acceptance

test plan.

Participants — The system test team is composed of developers supported by onc or
more analysts and is led by a specialist in the developed application. In the flight dynamics
cnvironment, mission critical applications are tested by an independent team.

Activity — Test execution follows the pattern prescribed in the system test plan.
Discrepancies between system requirements and the test results are identificd and assigned
to members of the development team for correction. Each change to the system is handled
in accordance with established CM procedures. Regression tests arc performed after
repairs have been made to ensure that the changes have had no unintended side cffects.
System testing continues until no more errors arc identified.

Monitoring — Use number of test cases identified versus number successfully tested to
measure progress; formally track errors found to gauge reliability; track cffort required 10
fix to predict maintainability.

ACCEPTANCE TESTING

Acceptance testing is begun after system testing has been successfully completcd. Complete dralts
of the user's guide and system description are provided to acceptance testers by the beginning of the
acceptance test phase.

Purpose — Acceptance testing verifics that the system satisfics its requirements.

Plan — All acceptance tests executed are based on the acceptance test plan written by
analysts prior to the start of the phase (see Figure 4-7).

53

Participants — Tests are executed by the acceptance test team supported by members of
the development team. Testing may be observed by product assurance representatives and

the user.

Activity — After preparations for testing are completed, the test team attempts to execute
all tests in the plan, working around any errors they uncoveér. This ensures that major
problems are discovered early in the phase. Only when execution of a load module (i.e.,
an executable image) is totally obstructed does testing cease until a new load module can be
installed. Each new load module is regression tested to ensure that previously
demonstrated capabilities have not been adversely affected by error corrections.

Monitoring — Use number of test cases identified versus number successfully tested to
measure progress; track errors found to gauge reliability; track effort required to fix to
predict maintainability.

i €

L [N

i

"
I

TEST MANAGEMENT GUIDELINES

A summary of essential management guidelines on software testing is presented below. The
observations about the planning and control of testing are derived from SEL experience.

&l

Realize that testing is important — 30 percent of development effort in the flight
dynamics environment is devoted to system and acceptance testing

Apply adequate resources

» Time — 35 percent of the time schedule

- Staff — experienced, well-trained in defect detection

» Computer — peak use in testing phascs of FORTRAN projects (see Figure 3-2)
Plan for it early — as part of the software development/management plan

Plan for it explicitly — using formatted test plans (sce Figure 4-7)

Test continually during the lifc cycle with five major types of testing (Reference 10) —
unit, integration, build/release, system, and acceptance

Prepare for testing — use testability as a criterion for evaluating requirements
statements, designs, and build/releasc plans

Apply testing aids (Reference 2)
» Requirements allocation matrices
» Decision tables and test summary tables
» Test library
Monitor testing costs (Refercnce 3) — collect data on
« Calendar time and staff effort spent testing and verifying software

« Cost of diagnosis — finding the defect
« Cost of repair — making all the necessary corrections to code and documentation

54

[(1

ali

| [P

g

al

"
]u‘

LD 4 11—

[

o

L

Ao

(e

Measilre testing progress

« Compare testing costs and number of defects with past projects

« Record defect detection rate as testing effort is applied

« Track number of tests identified, number executed, and number passed. The percentage
of executed tests that fail should be nearly halved for each subsequent load module
tested (see Table 5-1)

Table 5-1. Expected Percentage of Tests Executed That Pass

LOAD AVERAGE | PASS RATE
MODULE PASS RATE RANGE
Version 1 50% 35-70%
Version 2 77% 75-80%
Version 3 88% 85-90%
Version 4 99% 95-100%

CERTIFICATION

Broadly defined, certification is a statement attesting to something. For example, an individual may
be charged with certifying that '

« Coding standards were followed

Code agrees with PDL

CM procedures have been followed
Specific test cases were run)
All contractual items have been delivered

Although there is considcrable diversity in what is being certified, therc arc common aspects as
well. Certification is a binary decision — cither the materials or activitics are certified or they arc
not. It is performed by individuals who can be objective about their centification assignment. This
objectivity is a key reason for introducing certification into the software development process.
Certification contributes to quality assurance by providing an independent check on development.
Confidence in the final software product is enhanced if both the process and product are certified.

Essential management guidelines for certification arc summarized below.
Determine the objective of the certification, ¢.g., to ensure that

« Design, code, or documentation is correct

« Standards, procedures, or guidelines are being followed

« System performance meets operational requirements
Define entry criteria — what materials must be submitted for certification?

« Establish procedures for obtaining documents or code that will be requircd

« Identify the individuals responsible for certification

5-5

Define exit criteria — certification is a binary decision. How will submitted materials be
evaluated to make the certification decision?

Specify the certification procedure, document it, and follow it

More detailed recommendations depend on the object of certification. For example, in certifying
intermediate products like designs, test plans, or unit code, the materials submitted for certification
and the evaluation criteria will vary. Figure 5-1 shows the general guidelines applied to an example

of unit design certification.

1. Certification Objectives:
a. Ensure the design correctly provides the functionality required of the unit

b. Check for conformance with standards and conventions regarding prolog and PDL

c. Identify visible weaknesses in the design early so that defects can be repaired with
minimum cost

d. Encourage developers to thoroughly specify all unit interfaces — calling arguments,
parameter specifications, etc.

2. Entry Criteria — the following materials must be submitted:
a. Source listing of prolog and PDL
b. Structure chart or object-oriented diagram of the subsystem or major component to
which the unit belongs
c. Design certification form, containing author's name, date submitted for certification, unit

name, and subsystem name

3. Exit Criteria — some questions will be specific to the design methodology used. The
following are more general questions, typically used to evaluate submitted materials and
decide on certification: ’

Do the prolog and PDL adhere to all prevailing standards and conventions?

Are all necessary elements of the prolog complete, e.g., are all data elements described?

Does the PDL describe a valid process for providing the function assigned to the unit?

Is it clear from the PDL when the unit output will be generated?

Is the dependency clear between each input parameter or external reference and the

processing described in the PDL? ~

f Does the PDL define enough error detection logic?

g. Does the PDL account for the upper and lower bounds of unit input?

cao oo

4. Certification Procedure — recommended steps for the certification:
a. Meet with the development team leader to establish the position of unit design
certification in the project’s life cycle; all units must have their design certified before

they are implemented
b. Issue written descriptions of entry criteria, with examples of the required form for

submitted materials
c. Prepare a unit design certification checklist, based on exit criteria, to record evaluation

results

d. Document the procedure for obtaining materials, completing the certification checklist,
and presenting results to the development team

e. Implement the procedure, retaining certification results in the project library

Figure 5-1. Example of Unit Design Certification

5-6

b

o

I

==
==
L

{

F
bi

i e

(LA

{

H ,0' '1' '
3 il

Ll

{

V‘l 1
il

¢l

RN

o

!w L]

SECTION 6 — METRICS AND
KEY MANAGEMENT AIDS

Effective software project management and control depends on an accurate assessment ofa
project's health at any point in the life cycle. This assessment must be based on up-to-date metrics
that reflect the status of the project, both in relation to the project plan and in comparison to models
of expected performance drawn from historical experience with similar projects.

This section presents useful metrics for project evaluation and control and discusses several tools
designed to aid managers in performing these critical functions.

METRICS

Software metrics/measures can provide the manager with key indicators of project performance,
stability, and quality. Both objective and subjective measures are important (o consider when
assessing the current state of a project. Objective data consist of actual counts of items (e.g.,
staff-hours, SLOC, components, test items, units coded, changes, crrors, etc.) that can be
independently verified. They are usually collected through a formal data collection proccss.
Subjective data are based on an individual's or a group's feeling or understanding of a certain
characteristic or condition (e.g., level of difficulty of the problem, degree of new technology
involved, stability of the requirements, etc.). Together these data serve as a system of checks and
balances throughout the project. The wise manager depends on both objective and subjective data
to get an accurate picture of project health. Subjective data provide critical information for
interpreting and validating the objective data, while the objective data provide true counts that may
cause the manager to question his subjective understanding and investigate further.

Because collecting, maintaining, and reporting metric data can be a significant undertaking, cach
data item must serve a well-defined purpose. The project software development plan should define
which data will be collected and how cach data item will be used. To achieve the maximum benefit,
metric data must be accurate, current, and accessible to the manager.

The availability of project metrics will be of no or litile valuc unless the manager also has access 1o
models or metrics that represent what should be expected. This information is normally in the mind
of the experienced softwarc manager. Idcally, such historical data and expericnce should also be
stored in an "organizational memory" (data base) accessible to new managers. Using information
extracted from such a data base, managers can gauge whether measurement trends in the current
project differ from similar past projects and from the expected models for the local environment.
The costs and benefits of such a data base are further discussed in References 3 and 11,
respectively. '

The SEL project histories data base holds key characteristics and performance models of software
development in the SEL environment, as well as three classes of data for each past project: cost,
process, and product data. Cost data are confined to measures of effort. The use of cffort data
removes the effects of labor rates and hardware costs, allowing the manager to focus on the more
accurately modeled costs of software development and system enginecring. Process data include
information about the project (such as methodology, tools, and techniques used) and information
about personnel experience and training. Product data include size, change, and error
information and the results of statistical analyses of the delivercd code.

Figure 6-1 suggests the possibilities for useful comparison when a project histories data base is.
available. Models based on completed projects help the manager initiate and revise current plans
and estimates. As performance data are gathered for a new project, the manager can compare these
values with those for related projects in the data base.

The comparisons in Figure 6-1 should be viewed collectively as one component of a fecdback and
control system. Comparisons lead to revisions in development plans. To execute the revised
plans, the manager makes changes in the development process, which result in adjusted measurcs
for the next round of comparisons.

organizationat

PROJECT
HISTORIES
AND MODELS

PROJECT
PLAN

CURRENT

SUBJECTIVE
DATA REVISED PLAN

Figure 6-1. Management Through Measurement

MANAGEMENT METRICS AND THEIR USE

An cndless list of metrics can be proposed for management use, ranging from high-level effort and
software size measures to detailed requirements measures and personnel information. Quality, not
quantity, should be the guiding factor in selecting metrics. It is best to choose a small, meaningful
set of metrics that have solid baselines in the local environment.

In the SEL, eight key metrics contribute to the successful management of sofiware development
projects: 1) source code growth rate, 2) effort data, 3) system size estimates, 4)
computer usage, 5) error rates, 6) reported/corrected software discrepancies, 7)
software change rate, and 8) development activity status data. Managers analyzc the
metrics individually and in sets to get an accurate reading of the health of their projects with relation
to cost, schedule, and quality. Many of these metrics provide critical insight into the stability of a
project — insight that is lacking in standard performance measurcment systems.

The 'foﬂllowing pages describe these eight key software management metrics. The models presented

have been developed and refined based on the software heritage that is recorded in the SEL data
base. In each case, a real project example is presented that demonstrates the use of the metric.

6-2

jHJ‘u i

Il {

L

'n”w

e |
i L\M

&

 HHHHIN

1
]

[HiH

1l e
m lilap

‘]m”
il

3
llu‘l

il

i

S

oy «m

gt i

f

[
[

b ok

Wy

[

r

IM“‘H |
e,

L]

Im]
i

i

("

i

‘(\' |

|

{!

(e

SOURCE CODE GROWTH RATE -1

DEBIGN I CODEEBT SYSTEM | ACCEFTANCE

Deviation: Growth data above
. s . B = Possbie Caumes:

. Strong progress indicator durmg a) Very experienced team

% = b)Highreuse

|
implementation Q o Mirimal QA }
3 1
30}
» Key stability indicator during testing 8 oL } I
phases § L | :
« Tracks amount of code (SLOC) in D p- | :; "‘“"‘?"*'::;‘,‘9'
configured library oL | ¢) Smaller team than nomal
10 p= ’

it pdi B U | l 1
10 2 ko 40 0 ® n
% OF SCHEDULE

PR S
o 100

8;—————

NOTE: Overall trand is the same for both Ada and FORTRAN systems. Ada
systems show more growth in the design phase as compiled PDL is produced.

Figure 6-2. SEL Software Growth Profile

The growth of source code in the configured library closely reflects requirements completeness and the
software development process. In the SEL environment, periods of sharp growth in SLOC are scparated by
periods of more moderate growth (Figure 6-2). This is a reflection of the SEL practice of implementing
systems in builds. The model shows that, in response to requirements changes, 10 percent of the code is
typically produced after the start of system testing.

A deviation from the growth model simply emphasizes that the project is doing something diffcrently. For
example, a project that is reusing a large amount of existing code may show a sharp jump carly in the code
phase when reuscd code is moved into the configured library.

Figure 6-3 shows an example from the SEL cnvironment, where code growth occurs in a step-wisc fashion,
reflecting builds. The Gamma Ray Obscrvatory (GRO) AGSS (250 KSLOC), developed from 1985 to
1989, was impacted by the shuttle accident. Beginning with the implementation phase, the schedule was
stretched over 3 years and the staff reduced accordingly.

oo DESIGN | CODETEST [’:ﬁ” |‘°°‘,’;",‘,"°‘
w b | .
0 L l Explanation: Build 1 shows early
7 b I rapid growth due to a high level of
g o L | code reuse. Build 3 shows a long
'g' l delay before completing code in the
% ®r | middle of the system test phase.
240 | This was due to major specification
® I] problems in two of the three
» L | subsystems involved.
10
I L 1
10 20 90 100

% OF SCHEDULE

Figure 6-3. Example of Code Growth — GRO AGSS

6-3

EFFORT DATA -2

DESIGN CODE/TEST SYSTEM | ACCHEST ot
Deviation: More staff required to mest schedules ' '
) Possible causos:
a) More complex problem
* Smfﬁng p roﬁ Il'ZS should b) Unstable requirements causing extensive rework I l
reflect the environment o Inexparienced team | |
and project type I /SELIPMNNING mookt
| |
« Effortis a key indicator RAVLEIGH CURVE I
of progress and quality k= N
g
= Effort data are critical b I :
replanning aids I EXPECTED SEL PROFILE \
Devistion: Lcs‘s staff required to meet schedules I
Possibie causes: I '
a} Very productive team l
b} Poor qualty product
c) Easy problem l ' .
]l | I

TIME
Figure 6-4. SEL Staffing Profile Model

The typical staffing profile closely reflects the nature of the project environment and the type of problem
being solved. In the SEL environment, where a substantial portion of requirements details are not known
until mid-implementation, managers plan for a parabolic staffing profile instead of the traditional, widely
used Rayleigh curve (see Figure 6-4). However, once a project is underway, they expect (o see the doubly
convex curve shown above. The cause of this trend is not well-understood, but it occurs repeatedly on
flight dynamics projects in this environment and, therefore, is the SEL model.

Another important profile is the expected effort distribution among software development phases and among
software development activities. The SEL effort distribution models (Figure 6-5) show some differences
between FORTRAN and Ada projects.

FORTRAN

Effort Distribution by Phase (Date Dependent) OTHER
28%

ADA
DESIGN
19%

EHfort Distribution by Activity
{Not Date Dependent)

NOTE: The projects sampled for this figure were selectad for the purpose of comparing FORTRAN to Ada
and differ from those usaed to generate Tables 3-1 and 3-2.

Figure 6-5. SEL Effort Distribution Models

64

v I

Il
[

gL B8

gl

it

il
[

b L B

1
]

(e

{

IS N 4

(!

The SEL has found these metrics to be key factors in characterizing their environment. They are
also used as a yardstick for assessing the impact of new technology.

Utilizing the expected effort distributions and staffing profile, a manager can predict the total cost
and schedule based on effort spent to date. If more effort is required to complete the designof a
system than was planned, it is likely that the remaining phases will require proportionately more
effort as well. After investigating why the deviation has occurred, the manager can make an
informed choice as to whether staff or schedule must be increased and can plan accordingly.

Deviations in effort expenditure can also raise quality flags. If all milestones are being met on an
understaffed project, the team may appear to be highly productive, but product quality may be
suffering. In this case, the manager should not automatically reduce future effort predictions but,
based on an audit of the design and code, may need to add staff to compensate for work not
thoroughly completed in earlier phases.

Figure 6-6 presents an example of the use of metrics data in both planning and monitoring a project.
The Earth Radiation Budget Satellite (ERBS) AGSS (160K SLOC), developed during the 1982-
1984 timeframe, is considered to be a highly successful project. Effort data were a key factor in
management's detection and timely correction of several problems that would have seriously
jeopardized project progress.

REQMTS | PRELIM | DETAILED | BUILD | BUILD |BUILD | SYSTEM [ACCEPT- SYSTEM
ANALYSIS| DESIGN DESIGN 1 2 3 |TESTING| ANCE DELIVERY
26 TESTING
e o
w - [X J ®
E SECOND REPLAN -~ = oo o ACTUAL DATA
- -
o ®
g - .‘ -
4.l o i
]

% .

- . —
=)
0 FIRST REPLAN o0
T 14 = e e ® -
§ * \®,

°
s ° -
KA ®ee
% 10 b= ® -
g o
g .. [)
o/ @
i
Lzb 6 0/ g -
= L [14/ —
5 e
—d
z 2
PDR CDR AUDIT
[[} 1 1 1 ' 1 i 1 1 1
0 10 20 30 40 50 60 70 80 %0 100 110 120

Explanation: The original staffing plan was based on an underestimate of the system size. Toward the end of the design phase, 40% mare effort was required on
a regular basis. This was one of many ingicators that the system had grown, and the project was replanned accordingly. However, effort continued to grow when
the second plan called for it to level off and decline. When & was clear that still more staft would be required to maintain progress, an audit was conducted. The
audit revealed that the project was plagued with an unusually targe number of unresolved TBDs and requirements changes that were causing an excessive
amount of rework and that — as part of tha corrective action — another replan was necessary.

Figure 6-6. Effort Data Example — ERBS AGSS

6-5

SYSTEM SIZE ESTIMATES - 3

« Tracks change in estimates of
final system size (in SLOC)

« Is a key indicator of system
stability .

SYSTEM | ACCEPTANCE
CODE/TEST TEST TesT

1
Daviation: Size estimate

B grows above range
Causes:
a} Incomplete design

F-3
(=]

[
o

new requirerments

= b) Substantially changing or

n
o

« Size will typically be up to 40%
larger than PDR estimates

« Estimates should be made
monthly by project manager

« Metric used must be consistent
— either executable, total, or
noncomment lines

SIZE ESTMATE GROWTH (PERCENTAGE)
o

" Deviation: Sudden decreass in estimate
Possible Cause: Requirements removed
or negotiated tiut

|

]]
R Deviation: Little or no growth following PDR
| Possibl Causes:
a) Very stable, well- understood requirements
I b) Team very familiar with application

| | I

NOTE: Although Ada systems are usually larger than FORTRAN equivalents, no
appreciable diffarences have been noted in the growth percentage.

Figure 6-7. SEL Size Estimates Model

The growth of software size estimates should reflect requirements stability and completeness within
the environment. The profile must either be based on heritage or on a measure of requirements

clarity and completeness.

In the SEL environment, a large number of TBDs in the requirements and specifications, combined
with a substantial number of requirements changes, typically cause a system to grow up to 40
percent larger than is estimated at the time of PDR. As the details of the unknown portions of the
system become clear, the size estimate grows more rapidly. The range of accepted growth narrows

as the system is clearly defined (see Figure 6-7).

In the example shown in Figure 6-8, investigation revcaled that the project requircments were

growing substantially and that additional funding was

TESIGN CODE/TEST l SYSEM l ACCERTANCE

260000 P

T
e L I] o

18000C

UINES OF CODE

5

140000 Warming sign — size
estimates wandering due 10
unstable requirements

100000

6-6

needed to complete the work.

Symptom: System size exceeds 40 percent
growth threshold midway through
implementation (1).

Cause: Excessive requirements changes;
entirely new capabilities {subsystems)
added; and ineffective change control
mechanism.

Corrective Actions: Review cost for
requirements submitted since CDR on a
case-by-case basis. Enforce change control
procedures on future specification
modifications. Request more budget, and
replan based on resulting system size (2).

Figure 6-8. Sample Size Estimates — UARS AGSS

1|‘
il i

oL

i

1
i

t
P

i/

i

I

1
1

"
i

!
[T

o

¢ vt o

rl

I

|
il

i

I

{!

{

"

i

ey
L

= ™

COMPUTER USAGE - 4

» CPU is a key progress indicator for design
and implementation

« Use of CPU should reflect environment and
process phase .

« Either CPU time or number of runs may be
used

aN CODE AND SYSTEM | ACCEPTANCE
DEM UNITTEST TEsT | TEST

Deviatior: CPU htlaurs increasing 100 early
Possible Causes:

a) Significant staffing increase above plan
b) Extensive overlap of design with coding

* Deviation:

* Cumulative hours
flatter than model
Poseible Cause:
Inadequate
computer resources

Deviatior: Low hours at start

Possible Causesc

a) Team inadequately trained on
the computer

b) ‘Eoo much mwlork.

PERCENT OF TOTAL COMPUTER HOURS

TIME
NOTE: Ada systems require more CPU time throughout the development

lifecycle. However, tha overall trend (expressed as percent of the total) is the
sama for similar FORTRAN and Ada systems.

Figure 6-9. SEL Computer Usage Model

The use of CPU is directly related to the particular process being applied, but trends have been found to be
heavily environment dependent. The profile must either be based on heritage or a specific project plan. Use
of a development methodology that calls for extensive desk work, such as the cleanroom methodology
(Reference 9), will inevitably create significant deviations.

On a typical SEL flight dynamics project, a small amount of CPU time is used during the design phasc for
prototyping and entering PDL (more time is used in Ada systems for which PDL is compiled). The stecp
upward trend carly in the implementation phase reflects an increase in online development activitics (sce
Figure 6-9). System testing is CPU-intensive, continuing the trend. Further but slower increascs during
acceptance testing are due to extensive numerical testing and analysis.

Figure 6-10 is an example of CPU metrics taken from the ERBS AGSS, developed from 1982 to 1984
(160 KSLOC). This project deviated from the SEL model and raised a red flag. In this case, investigation
showed that the project was being adverscly affected by unstable requircments.

5V5. | ACC.
DESIGN I TesT | TEST
1200 IR 2
o
1000 | 7
|
g 800 t+
s {
2 600 i
e | .
g ol I
1
200 |
I [
o L 1 ! t [BT
[20 40 &0 a0 100

Symptom: Computer usage zero midway through
implementation (1).

Cause: Project doing redesign in response to
excessive requirements changes instead of
implementation.

Corrective Action: Replan project based on new
scope of work (2). :

Figure 6-10. Example of Computer Usage — ERBS AGSS

6-7

ERROR RATES - 5§

DESIGN CODE/TEST | SYSTEM TEST ACC%";"‘}NCE

: 1 I
 Track errors vs. total estimated 7F Deviston: Project’s aror rae)
. . . Is ai @ m
size of project in developed SLOC Peesl Caumen:

6 |- a) Unreliable software

b) Misinterpreted requirements
¢) Extremely complex software
5 - - -

o Error rates should continually

decrease in subsequent phases. I |
The SEL has found the "halving” g b 1
model reasonable, in which rates £ F I I
are cut by 50% each phase 5 1 /I lp
2 3F I ' Deviation: Project's error
« Accounting for differences in & I 1 iAot
coding style, rates are similar for 2rF I I 2’ E;"a'{'e ::l‘:are
FORTRAN and Ada, although I | o macsaetosing
classes of errors differ r i I |
0 1 |
SCHEDULE

Figure 6-11. SEL Error Rate Model

There are two types of information in the error rate model shown in Figure 6-11. The first consists
of the absolute error rates expected in each phase. The rates shown here are based on projects from
the mid-1980s. The SEL expects about four errors per thousand SLOC during implementation,
two during system test, and one during acceptance testing. Analysis of more recent projects indi-

~ cates that error rates are declining as the software development process and technology improve.

The second piece of information is that error detection rates reduce by 50 percent in each
subsequent phase. This trend seems to be independent of the actual values of the error rates. It is
still true in recent projects where overall error rates arc declining. However, if the error ratc is low
and the detection rate does not decline from phase to phase, inadequate testing and a less reliable
system are likely.

Figure 6-12 is an example from the Cosmic Background Explorer (COBE) AGSS softwarc
developed from 1987 to 1988 (175 KSLOC).

DEBIGN cooeesT | syBTEM TEsT | ACCETTANCE

Symptom: Lower error rate and lower error
detection rate.

Cause: Early indication of high quality.
Smooth progress observed in uncovering errors,
even between phases (well-planned testing).

ERRORS PEA KSLOC

Result: Proved to be one of the highest quality
systems produced in this environment.

-~
1)

SCHEDRE -

Figure 6-12. Sample Error Rates — COBE AGSS

6-8

11
|4

o

[|

]

1
Il

i

K

L.

il

|

K

]

)
|

t

U

(

i

¢!

[

REPORTED/CORRECTED SOFTWARE DISCREPANCIES - 6

100% I Obssrvation: Project's count of open
. i L. discrepancy reports is growing
« Key information is in the Possible causes:

Discrepancles .
slope of the "Open Reports” | 2) Inadequate staffing 10 Discrepancies
pe of P P correct errors Found Fixed
curve b) Software very unreliable

¢) Ambiguous or volatile

» Expect sharper error
increases at start of each
phase

= Trends (rates) in each of the
three curves provide

requirements

Observation: Project's count of opan
discrepancy repons Is decreasing
Possible causes:

a} Stable development

b) Testing/development progressing
c) Reliable, wefl-designed software

information {easy o fix erors)
Open discrepancy
Model is similar for both ook repons
» FORTRAN and Ada projects 0 1 1 1 - —
TIME
Start of Testing Phase End of Testing Phase

Figure 6-13. SEL Software Discrepancy
Status Model

By consistently recording reported vs. fixed discrepancies, the manager will gain insight into soft-
ware reliability, progress in attaining test completion, staffing weaknesses, and testing quality. The
"open reports” should decline as testing progresses unless there are inadequate staff correcting pro-
blems or the software is exceptionally "buggy”. The point at which the "open" and "fixed" curves
intersect is the point at which defects become corrected faster than they are reported. At this time,
the manager can more confidently predict the completion of the testing phase (sce Figure 6-13).

This error data — combined with test executions and pass rates — will enable the manager to
predict quality and completion dates. When the number of errors found is lower than expected,
while the test rate is at or above normal, the software is of high quality.

The example shown in Figure 6-14 is from the Trajectory Computation and Orbital Products
System (TCOPS) developed from 1983 to 1987. The total size of this system was 1.2 million
SLOC. .

Symptom: Early in testing, errors
were not getting corrected (first 15
weeks).

Cause: Lower quality software.
Errors were not found during system
testing.

Corrective Actions: Staffing was
increased at week 20 to help address
open errors.

NUMBER OF FAILURE REPORTS
{IN THOUSANDS)

Results: System attained stability at
week 35, with errors being corrected
faster than they were being reported.

A
Q 5 10 15 0 > k] k1 L4

WEEKS OF TESTING

Figure 6-14. Example of Discrepancy Tracking — TCOPS

6-9

RATE OF SOFTWARE CHANGE -7

000 DESION CODE/TEST SYSTEM | ACCEFIRNCE
800 = Deviation: Adulal change rates are l I L
above modei upper bounds I l """"""
Possibie Causes:
8 7.00 |- a) Rapidly changing requiremnaents |
R b) Inexperienced team :
« Reported changes include errors g ¢) More tharough testing (high quaiity) | =)
E Al o d) Erroneous specifications I ;
« Change rate is a key stability g soof | | |
indicator : | : I
3 amf l |
« Both absolute rate and weekly £ 400 | ! ' !
}]] Deviation: Actual change
increments are sxgmﬁcant é 200 l D o e s
g 20k Possible Causes:
I a) Stable requirements
1.00 ja b} Compiete design
I'_ ¢) inadequate testing
0.00 S B | " [| l | l 1 11

NOTE: No difference in change rate has been noted between similar FORTRAN
and Ada systams when adjusiments are made for differences in coding style

Figure 6-15. SEL Change Rate Model

The rate at which the software is changing strongly reflects the software development process and stability
of project requirements, so any model used for comparative analysis must be based on a solid understanding
of the environment. Two key pieces of information are shown in the model: (a) the absolute value of the
change rate and (b) the week-to-week trend.

In the SEL environment, the expected change rate has been determined through past project measurement.
The model (Figure 6-15) reflects a steady, even growth of software changes from mid-implementation
through acceptance testing. Exaggerated flat spots (periods without change) or a large jump (many changcs
made at the same time) in the data should raise flags. Some deviations of this nature may be normal (c.g.,
during the testing phase, code CM procedures often’ cause changes to be held and recorded as a group).
However, any deviation is a warning sign that should spur investigation.

Figure 6-16 presents an example from the SEL environment of a project that experienced a higher than
normal change rate. The specifications for the Geostationary Operational Environmental Satellite (GOES)
AGSS (129 KSLOC), developed from 1987 to 1989, were unusually problematic. Many changes to the
requirements were made throughout the project, even after implementation had begun. Early recognition of
the change rate allowed managers to compensate for this by tightening CM procedures.

et Symptom: Change rate higher than normal
range beginning midway through
implementation.

omman aowrresy

Cause: Unusually high number of specification
errors and requirements changes.

Corrective Action: Strongly enforced CM
procedures to deal with changes.

Result: High-quality project delivered on
schedule.

o L oa la

Figure 6-16. Change Rate Example — GOES AGSS

6-10

|

b

e

- '

gl
il

LI

i

k|

&

gl |

1
|

I
I}

L

LN

£

GO N R N SR FA R AT

o

&

L

DEVELOPMENT ACTIVITY STATUS DATA -8

» Key progress indicator

« Indirect software quality
indicator

» Model must reflect
development methodology
used

» Monitor only major activities

Units Coded

Units Tested

Start of Build 1
Figure 6-17.

IMPLEMENTATION End of Build 1

SEL Development Status Model for a
Single Build

Development status measures provide insight into the progress of individual development activities that
comprise a particular phase. These activities should represent the major sequential steps required Lo
complete development of software units. Development status measures are valuable in design,
implementation, and testing phases. In the SEL environment, managers track these measures individually
to see that all activities are progressing smoothly and in parallel. Figure 6-17 presents an idealistic model
for the activities required to implement a software build.

Figure 6-18 presents an example from the SEL cnvironment, showing development status data for the entire
implementation phase. The GOES Dynamics Simulator in Ada (GOADA, 171 KSLOC) was developed
between 1987 and 1990. The project finished code and unit testing nearly on schedule. When severe
problems were encountered during system integration and testing, it was found that insufficicnt unit testing

had resulted in poor quality software.

800

UNITS

L Target
**= Units Coded
<~ Units Read

+a= Units Tested

A4 1

IMPLEMENTATION PHASE
Figure 6-18. Development Profile Example — GOADA

6-11

Symptom: Miracle finish (1) —
code reading and unit testing
activities catch up to coding near
deadline, when a 3-4 week lag was
standard earlier in the phase.

Cause: Some crucial testing
information was not available;
short cuts were taken in code
reading and unit testing to meet
schedules.

Result: Project entered the
system testing phase with poor
quality software. To bring the
software up to standard, the
system test phase took 100%
longer than expected.

ADDITIONAL MANAGEMENT METRICS

As mentioned earlier, each environment must determine which metrics and indicators are most
useful for supporting the management process. Obviously, the eight SEL metrics just described are
not universally applicable. In addition, other measures may be used for particular projects by
managers in environments with unique characteristics. Although numerous additional metrics are
defined in the literature, only those measures that have been used successfully as management aids
in the SEL are described below (Table 6-1).

None of these recommended measures are useful without some baseline or expectation of what the
values may be in a particular environment. If no empirical data exist, an organization may propose
baselines derived from subjective estimates. However, as soon as a metrics program is instituted,
the subjective baselines must be substantiated or refined using objective data.

Table 6-1. SEL Recommended Metrics

FREQUENCY TYPICALLY USED IN

METRIC SOURCE {COLLECT/ANALYZE) DETERMINING...

Changes (to source) Tool Waeekly/weekly Quality of configuration control,
- stability of specifications/design
Changes (to o] By event/biweskly Quality of specifications, the need to
specifications) replan
Changes {classes of) Developers By avent/monthly "Gold plating”, design instability,
spacifications volatility
Computer usage Tool Biweekly/biweokly Prograss, design instabilities,
. procass control

Discrepancies Testers and By event/biweokly Areas of staffing needs, reliability of
(reportad/ open) davelopers software, schedules

Effort (1otal)

Time accounting

Waeakly/waekly

Quality of planning/managing

Effort {per activity} Developers and Waeekly/monthly Schedules, the need to replan
managers

Effon (to repair/to Developers Woeekly/monthly Quality of design, cost of future

change) maintenance

Errors (per inspaction) Developers By event/monthly Quality of software, fack of desk
work

Errors (classes of) Devslopers By eventmonthiy Specific design problems

Errors (total) Developers By event/monthly Software reliability, cost of future
maintenance

Size {modules planned/ Managers Biweekly/biweekly Progress

designaed/inspected/

coded)

Size (manager's Managers Monthly/monthly Stability of specifications, the need

eslimate of total) to replan

Size {source growth) Tool Waeekly/weekly Quality of process, design
completenaess/quality

TBDs (specifications/ Managers Biweekly/biweekly Lavel of management conirol

design)

Tests (planned/ Testers Weekly/weekly Complation schedules, progress

exacuted/ passed)

6-12

\l“
li

|

al
lif

il

(T

i

"
i

t

il

Qi

gl

i

(! -

LI

r

r

C

DATA COLLECTION

To produce the metrics described, accurate data must be extracted from the development project. It
is important to determine which management measures are going to be utilized during the
development process so that effort is not expended in collecting extraneous data.

Table 6-1 includes the recommended frequency for which data used for the management measurcs
should be collected. Tt also contains the recommended source of each of the required metrics. Once
again, it should be noted that most projects would probably use only a subset of the measures listcd
in the table. The cost in project overhead to define, collect, and utilize the metrics described is
relatively small, providing that only those metrics to be used in management activities are actually
collected.

Nommally, three categories of cost are associated with a "metrics” program:

— Overhead to a development project (filling out forms)
_ Cost of processing the data (QA, data entry, storing, filing)
— Cost of analyzing the data (research and "process improvement” programs)

The overhead to the software development task itself for providing the listed metrics is minimal —
well under 0.5% of the project cost — while the data processing cost for the management metrics
program should be no more than 2% of the cost of the project in question. This includes data entry,
data processing, generating summary output, and routine QA. The third category (analyzing data)
is minimal for routine use in software development efforts and should be considered a normal
managerial responsibility. The analysis function can be much more extensive in environments that
are involved with a full "process improvement” and/or software engincering rescarch program. In
these cases, analysis costs could run as high as 10 to 20 percent of the total development clfon.

_AUTOMATING METRICS ANALYSIS (THE "SOFTWARE

MANAGEMENT ENVIRONMENT")

As the corporate history of an environment grows and as the characteristics of the software process
are better understood through the collection and application of metrics, an organization should
cvolve toward automating the structure, representation, and even analysis of these measures. The
SEL has built such a tool to aid in the use of relevant metrics toward improved management
awareness.

The Software Management Environment (SME, Reference 12) is an integrated set of software tools
designed to assist a manager in monitoring, analyzing, and controlling an ongoing softwarc project.
The major functions of the SME include the ability to track software project paramelers; 10
compare these factors to past projects; to analyze the differences between the current projcct's
development pattems and the expected development pattern within the environment; to predict
characteristics such as milestones, cost, and reliability; and to assess the ovcrall quality of the
project's development process. To provide these functions, the tool examines available develop-
ment data from the project of interest including manpower, software changes, computer utilization,
and completed milestones.

Figure 6-19 depicts the architecture and typical uses of an automated tool such as SME. The basis
for the models and information available to such a tool must come from the collection of data within

6-13

the development environment and should result in such summary information as effort distribution
in the life cycle, relationship equations, and the impact that varying technologies have on the

development process. Examples are shown in Figure 6-20.

SEL Data Base

» Past project data
» Product

estimates

L

Current Data

» Project charat-
teristics
» Project error data
Models and
Measures
+ Profiles of past
performance
+ Definitions of key
parameters
» Modef and rela-

af

tionships
R

SME

Rule Base
» Rules of SW
development
+ Problem and
project charac-
teristics
» Rules for eval-

uating quality

PREDICT

System
ze

Q.mer@ze

Final System
Size

'S L
©CT ST
Tme
ANALYZE

e Current Project

7 Model
#of
Errors

ASSESS
Above

Normal

Below

" GUIDANCE

== Cument Project

7 Model
#of
Emors

FinaTError
Rate

Enors below normal
becausa of:

1. Insulficient lssiing

2. Experiencead team
3. Problem less difficult
than expacted

Project Assessmant

Quality

Time

Project will be very unrefiable; to correct
{. improve code reading

2. Tighten configuration control

3. Enforce coding standards

End

you should

Figure 6-19. Example SME Output

6-14

I

Hi I

t. ©l. & U 1 i u

lid

L

1

L]

g

-

£

|H
L

v r

(!

I

!
'

I\ me

¥

I

e

Design Othoer
27% [29%

Code
Testing \ 259,
28%

« Knowledge of software development environment

Comparison of Interface Errors
Ada vs. FORTRAN

FORTRAN 1stAda 2nd Ada 3rd Ada

« How do naw techniques or methodologies
impact software development?

Model of
Measure

N

"This trend means
testing is not
adequate’

Code
Changes

&~ Current Project

« Evaluation of strengths and weaknesses

Effort = 1.48 (KSLOC %
Duration (months) = 4.6 (KSLOC %)

Number of
Computer Runs = —108.27 + 150.88 (KSLOC)

Average Staff Size = .24 Effort 73

- Estimation of final project parameters

Figure 6-20. Build Corporate Memory Into a Tool

GENERAL INDICATORS OF PROJECT STATUS

The metrics described thus far function as objcctive yardsticks against which the manager can gauge
project progress and quality. The following is a list of gencral characteristics — some subjcctive —
that supplement these metrics as indicators of truc project condition.

Frequency of schedule/milestone changes

Frequency and magnitude of changes should be decreasing throughout the

development process.

Consistency in organizational structure compared to original plans
Minor adjustments to the organization of the project team are expected, but major

changes indicate problems.

Fluctuation in project staff level and system size estimates
Fluctuations should be within uncertainty limits that become narrower as project

development evolves.

Ease of access to information on project status, schedules, and plans
Rapid responses to questions about project status and schedules reflect well on the

quality of the software development plan.

Number of overtime hours required or planned to attain certain objectives
Relying on overtime hours may indicate problems with the staff's qualifications or the

team leadership.

6-15

Level of detail understood and controlled by the project manager and project leader
Managers' responses to questions about development progress indicate the degree of
control exercised by leadership.

Discrepancies in staff level and workload
Major differences between planned workload and actual workload may indicate lack of
understanding.

Discrepancies in computer usage
A decrease or slow start in using the computer may indicate incomplete design.

WARNING SIGNALS AND CORRECTIVE ACTIONS

When a project is in trouble, the manager must take immediate corrective measures to move it back
on a successful course. The following lists of warning signals and corresponding corrective
actions itemize many of the common problems identified by the SEL.

Problems With Requirements and Specifications

Number of TBD requirements higher than norm or not declining
If critical specifications are missing, design of the affected portions of the system
should not proceed until the information is obtained. In noncritical cases, development
may continue despite the incompleteness. Assess the effect of missing requirements/
specifications and determine whether relatively safe assumptions about the missing
information can be made. Before starting the next phase, prepare a risk management
plan. For all TBD specifications, assign due dates for resolution of TBDs and notify
higher management if schedules are not met.

Number of requirements questions submitted vs. questions answered is high and
increasing
Indicates inconsistent or confusing specifications. Difficulties become compounded if
development is permitted to continue. Stop development activity and resolve
inconsistency or confusion in consultation with the user organization. Negotiate a
reduction in the scope of the system by defining an understandable subset of the
original system. Document all assumptions about requirements in the functional

specification.

High number of specification modifications received vs. number completed
If major changes or additions to requirements are unavoidable, the design of the
affected portion of the system must be postponed. Split development into two
releases, with the late specifications included in the second release. Hold a separate

CDR for the second release.

Problems With System Design

Actual number of components designed is fewer than estimated at a particular point in the
detailed design phase :
Lack of design growth may be due to poor direction from the team leader,
inexpericnced staff, use of new technology, or changing requirements. Determine the
cause of the slow growth. Based on the cause, either replace junior personncl with
senior personnel, provide training, decrease staff size to a manageable level, set up a
prototyping effort to improve technical understanding, or decrease the scope of the

system.

6-16

“‘
i

B

|1

WL

1

|

i

t
]

Bl

Wi Ei

i

Iu Ny

(o

nTeooeeoomeiognr o

Problems With Implementation

Actual number of units coded, tested, and integrated is fewer than those estimated at a

particular point in the implementation phase : -
Lack of code growth may be due to poor direction from the team leader, inexperienced
staff, changing requirements, or incomplete design. Determine the cause of the slow
growth. Based on the cause, either replace junior personnel with senior personnel,
stop staff growth, or hold changes and complete implementation of a build first.

Number of completed units increases dramatically prior to the scheduled end of a build or
release (the "miracle finish")
Indicates that code reading and/or unit testing were inadequately performed, and many
coding errors have not been found. Reschedule the effort so that code reading is
performed properly; otherwise, substantially more time will be consumed during
system testing in isolating and repairing errors.

Problems With System or Acceptance Testing

Testing phase was significantly comp'ressed :
Testing may not have been as complete or as thorough as necessary. Review test plan
and results closely; schedule additional testing if indicated.

The number of errors found during testing is below the norm
Test results may have received inadequate analysis. Use personnel experienced in the
application to review test results and determine their correctness. Rerun tests as
necessary.

Problems With System Configuration

More than one person controls the configuration
Sharing of configuration control responsibilities can lcad to wasted cffort and the use
of wrong versions for testing. Seclect one person as the project librarian, who will
organize configured libraries, implement changes to configured componcnts, and issue
documentation updates about the system. Component changes must be authorized by
the technical leader responsible for QA.

“Corrected” errors reappear
The corrected version may not have been used because more than onc person
controlled the configuration, or the staff was not aware of the ripple effect of other
changes that should have been made when the original error was corrected.
Consolidate configuration control responsibility in one person. Assign morc scnior
staff to analyze the effect of error corrections and other changes.

Problems With Development Schedules

Continual schedule slippage
Staff ability may have been misjudged or the staff needs firmer direction. Bring in
senior-level personnel experienced in the application to direct junior-level personncl
and provide on-the-job training. Decrease the scope of the system.

6-17

Development activity is uneven and ragged; effort drops dramatically immediately after a
milestone is reached :

Personnel have been assigned to work part-time on too many projects. Staff will tend
to concentrate on a single project at a time, sometimes to the detriment of other project
schedules. Reassign personnel, preferably to one project, but never to more than two

at a time.

Personnel turnover threatens to disrupt development schedule

The effect of tumover is not directly proportional to the number of staff involved. For
each key person who leaves a project, two experienced personnel should be added. A
junior project member should be replaced by a person at least one level higher in
experience. Only in this way can a manager balance the effects on the schedule of the
training and familiarization time new staff will require.

Capabilities originally planned for one time period are moved to a later time period

If a commesponding move of later capabilities to an earlier time period has not been
made, the danger is that the development team-will not be able to handle the additional
work in the later period. Obtain justification for the change with detailed schedule
information for the new and old plans. If the shift of capabilities is extensive, stop
development activity until the development/management plan can be revised, then
proceed.

Change or decrease in planned use of methods or procedures occurs

The methods or procedures had some use or expected benefit or they would not have
been included in the development plan. Obtain justification for the change, to include
showing how the expected benefit from the planned use of the method will be realized
in light of the change.

BASIC SET OF CORRECTIVE ACTIONS

Some consistent themes appear in the lists of corrective actions, regardless of problem area. These

recommendations constitute the SEL's basic approach to regaining control of the project when
danger signals arise:

L d

Stop current activities on the affected portion of the system and assess the problem
Complete predecessor activitics

Decrease staff to manageable level

Replace junior with senior bersonnel

Increase and tighten management procedures

Increasc number of intermediate deliverables

Decrease scope of work and define a manageable, doable thread of the systcm
Audit project with independent personnel and act on their findings

6-18

miG Wi R

Kl

[T (]

.
| i

i

P a

Ki ai | Wi [T |

RE |,

i

Bl

1L

L) |

v

I (L N i P SR i r

r

'”‘ b

SECTION 7—REVIEWS AND AUDITS

Reviews and audits are methods for assessing the condition of the project. Although both
techniques address quality assurance by examining the plans, methods, and intermediate products
associated with the development process, they are conducted for different reasons. Reviews are
routinely scheduled as part of the development process; they mark key phase transitions in the
software life cycle. Audits are generally not predetermined but are conducted when needed to
evaluate.the project’s status.

REVIEWS

Reviews are designed to provide regularly scheduled monitoring of project status. The following
four questions can serve as general guidelines, regardless of the type of review:

Is the development plan being followed?

Is the project making satisfactory progress?

Are there indications of future problems? .

Is the team prepared to proceed with the next phase of development?

Reviews may be characterized in various ways, such as formality or timing. Informal rcvicws may
be held to brief higher level managers on the current state of the project. In the SEL cnvironment,
an informal review is generally held following completion of each build. It covers important points
that need to be assessed before the next phase of implementation is begun, such as changes to the
design, schedules, and lessons leamed.

A formal review generally involves a more detailed presentation and discussion and follows a
prescribed agenda. Some rcviews may rescmble progress reports delivered at fixed intervals, c.g.,
weekly or monthly. In the SEL environment, five formal reviews are reccommended — system
requirements review (SRR), software specifications review (SSR), preliminary design review
(PDR), critical design rcview (CDR), and operational rcadiness review (ORR). These reviews
are scheduled at key transition points between life cycle phases (sec Figure 7-1).

LIFE REQUIREMENTS REQUIREMENTS | PRELIMINARY | DETAILED SYSTEM ACCEPT-
CYCLE DEFINITION AND ANALYSIS DESIGN DESIGN IMPLEMENTATION TEST ANCE
PHASES | SPECIFICATION TEST
REVIEWS SRR SSR PDR CDR ORR

Figure 7-1. Scheduling of Formal Reviews

The remainder of this section examines the five reviews in order of occurrence and describes the
format of the review (presenters, participants, and agenda), key issues to be addressed at the
review (in addition to the general questions above), and hardcopy material (outline and
suggested contents). The hardcopy material will contain some of the same information found in the
documents described in Section 4. For example, when preparing the hardcopy material for the

7-1

PDR, some of the contents from the completed preliminary design report can be used. The
manager should also keep in mind that, as with the documents in Section 4, there is some flexibility
in selecting the most appropriate information to include in the hardcopy material. The contents
suggested in this section are intended as a guideline.

SYSTEM REQUIREMENTS REVIEW

SRR Format
Presenters — requirements definition team

Participants
« Customer representatives
» User representatives
- CCB
» Senior development team representative(s)
» QA representatives

Time — after requirements definition is compléte and before the requirements analysis phase
begins

Agenda — selective presentation of system requirements, highlighting operations concepts
and critical issues (e.g., TBD requirements)

Materials Distribution
+ The requirements and functional specifications document is distributed 1 10 2 wecks prior to
SRR

» Hardcopy material is distributed a minimum of 3 days before the SRR

Key Issues To Be Addressed
What is the effect of the TBD items?
What timetable has been established for resolving TBD items?

Have all external interface requirements been defined?
Are operational methods and performance constraints understood (e.g., timing, accuracy)?
Is the project feasible, given the constraints on and assumptions about available resources?

SRR Hardcopy Material
An outline and suggested contents of the SRR hardcopy material are presented in Figure 7-2.

il I TR (IR H S PR |

WE oW WN m

Kiii

1l

L 1Nl

Kl

L

1IN

Bl

i

|

o

i

[

nmi

!

i

DS

I

7

{1

10.
1.
12.

Agenda — outline of review material
Introduction — purpose of system and background of the project

Requirements summary — review of top-level (basic) requirements developed to form

the functional specifications

a. Background of requirements — overview of project characteristics and major events

b. Derivation of requirements — identification of input from project office, support
organization, and system engineering organization used to formulate the requirements:
support instrumentation requirements document {SIRD), memoranda of information
{MOlIs), and memoranda of understanding (MOUs) ’

c. Relationship of requirements to level of support provided — typical support, critical
support, and special or contingency support

d. Organizations that provide system and support input and receive system output

e. Data availability — frequency, volume, and format

f. Facilities — target computing hardware and environment characteristics

g. Requirements for computer storage, failure/recovery, operator interaction, system error
recovery, and diagnostic output

h. Requirements for support and test software — data simulators, test programs, and

utilities
Overview of the requirements and functional specifications document — its evolution,
including draft dates and reviews and outline of contents

Interface requirements — summary of human, special-purpose hardware, and
automated system interfaces, including references to interface agreement documents
{IADs) and interface control documents (ICDs)

Performance requirements — system processing speed, system response time, system
failure recovery time, and output data availability

Environmental considerations — special computing capabilities, e.g., graphics,
operating system limitations, computer facility operating procedures and policies, support
software limitations, database constraints, resource limitations, etc.

Derived system requirements — list of those requirements not explicitly called out in
the requirements document but representing constraints, limitations, or implications that
must be satisfied to achieve the explicitly stated requirements

Operations concepts

a. High-level diagrams of operating scenarios showing intended system behavior from the
user's viewpoint

b. Sample input screens, menus, etc.; sample output displays, reports, plots, etc; critical
control sequences

Requirements management approach

a. Description of controlled documents, including scheduled updates
b. Specifications/requirements change control procedures

c. System enhancement/maintenance procedures

Personnel organization and interfaces
Milestones and suggested development schedule

Issues, TBD items, and problems — a characterization of all outstanding requirements
issues and TBDs, an assessment of their risks (including the effect on progress), and a
course of action to resolve them, including required effort, schedule, and cost

Figure 7-2. SRR Hardcopy Material

7-3

SOFTWARE SPECIFICATIONS REVIEW

SSR Format
Presenters — software development team

Participants
_+ Requirements definition team
» Customer representatives
» User representatives
+ QA representatives for both teams
+ CCB

Time — after requirements analysis is completed and before preliminary design is begun

Agenda — selective presentation of the results of requirements analysis, directed primarily
toward project management and the end-users of the system

Materials Distribution

» The requirements analysis report and software development/management plan are
distributed 1 to 2 weeks prior to SSR

- Hardcopy material is distributed a minimum of 3 days before the SSR

Key Issues To Be Addressed
Have all requirements and specifications been classified (as mandatory, derived, "wish list”,
information only, or TBD)?
Is the reuse proposal realistic in view of software availability and cost drivers?
Is the selected system architecture an appropridte framework for satisfying the requirements?
Are the requirements and functional specifications testable as written?
Have all requirements issues and technical risks been addressed?

Is the foundation adequate 1o begin preliminary design?

SSR Hardcopy Material
An outline and suggested contents of the SSR hardcopy material are presented in Figure 7-3.

74

l

I

Wi W W

WilE

Bl

M e

mi ENE AW

]

T

1 b

i

‘m Ca

i

[

-

g

l“.,‘

[

10.

11.
12.

Agenda — outline of review material
Introduction — background of the project and purpose of system

Analysis overview — analysis approach, degree of innovation required in analysis, special
studies, and results

Revisions since SRR — changes to operations concepts, requirements, and functional
specifications effected following the SRR

Reusable software summary

a. Key reuse candidates — identification of existing software components that satisfy
specific system functional specifications exactly or that will satisfy them after
modification

b. Overall architectural concept for the system

c. Matrix of requirements to be fulfilled by reused components

Classification summary

a. List of requirements and functional specifications with their assigned classifications
(mandatory, derived, *wish list®, information only, or TBD} |

b. Problematic specifications — identification and discussion of conflicting, ambiguous,
infeasible, and untestable requirements and specifications

c. Unresolved requirements/operations issues, including the dates by which resolutions to

TBDs are needed

Functional specifications
a. High-level data flow diagrams showing input, transforming processes, and output
b. Data set definitions for interfaces to the system

Development considerations

a. System constraints — hardware availability, operating system limitations, and support
software limitations

b. Utility, support, and test programs — list of auxiliary software required to support
development, e.g., data simulators, special test programs, software tools, etc.

c. Testing requirements

d. Development assumptions

Risks, both to costs and schedules — includes risks related to TBD or changing
requirements as well as technical risks

Summary of planned prototyping efforts needed to resolve technical risks, including
the goals and schedule for each effort

Personnel organization and interfaces

Milestones and schedules —includes development life cycle {phase start and finish

 dates), schedule for reviews (internal and external), build/release dates, delivery dates of

required external interfaces, schedule for integration of externally developed software and
hardware

Figure 7-3. SSR Hardcopy Material

7-5

PRELIMINARY DESIGN REVIEW
PDR Format

Presenters — software development team

Participants
» Requircments definition team
» QA representatives from both groups
» Customer interfaces for both groups
» User representatives
 CCB
Time — after the functional design is complete and before the detailed design phase begins

Agenda — selective presentation of the preliminary design of the system. The materials
presented at PDR do not necessarily show the technical depth that the development team has
achieved during the preliminary design phase (e.g., presentation of operating scenarios should
be limited to the nominal operating and significant contingency cases). Full details of the
technical effort are documented in the preliminary design report

Materials Distribution

» The preliminary design report is distributed at least 1 week prior to PDR
« Hardcopy material is distributed a minimum of 3 days before PDR

Key Issues To Be Addressed

Have alternative design approaches been examined?

Are all requirements traceable to subsystems in the functional design?

Is the subsystem partitioning sensible in view of the required processing?

Are all interface descriptions complete at both the system and subsystem level?

Are operational scenarios completely specified?

Is the error handling and recovery strategy comprehensive?

Is the estimate of resources realistic?

Is the schedule reasonable?

Have technical risks, including any remaining TBD requirements, been adequately addressed?

Has the design been elaborated in baseline diagrams to a sufficient level of detail? (Reference 2

presents information on level of detail)
Does the design facilitate testing?

PDR Hardcopy Material
An outline and suggested contents of the PDR hardcopy material are presented in Figure 7-4.

7-6

wil

il

Wi

{

!
I

Rl

. N

Sl mili |

i
i

E1

mi W

i LR

il

I’

REAATR CRNENE (R SO

e

o

10.
1.
12

Agenda — outline of review material
Introduction — background of the project and system objectives

Design overview

a. Design drivers and their order of importance (e.g., performance, reliability, hardware,
memory considerations, programming language, etc.)

Results of reuse tradeoff analyses (at the level of subsystems and major components)
Changes to the reuse proposal since the SSR .

Critique of design alternatives

Diagram of selected system design. Shows products generated, interconnections among
subsystems, external interfaces. Emphasis should be on the differences between the
system to be developed and existing, similar systems

f. Mapping of external interfaces to ICDs and ICD status

System operation

a. Operations scenarios/scripts — one for each major product that is generated. Includes
the form of the product and the frequency of generation. Panels and displays should be
annotated to show what various selections will do and should be traced to a subsystem

b. System performance considerations

oao o

Major software components — one diagram per subsystem
Requirements traceability matrix mapping requirements to subsystems

Testing strategy

a. How test data are to be obtained

b. Drivers/simulators to be built

¢. Special considerations for Ada testing

Design team assessment — technical risks and issues/problems internal to the software
development effort; areas remaining to be prototyped

Software development/management plan — brief overview of how the development
effort is conducted and managed

Software size estimates — one slide
Milestones and schedules — one slide

Issues, problems, TBD items beyond the control of the software development team
a. Review of TBDs from SSR
b. Dates by which TBDs/issues must be resolved

Figure 7-4. PDR Hardcopy Material

7-7

CRITICAL DESIGN REVIEW

CDR Format
Presenters — software development tcam

Participants
» Requirements definition team
« QA representatives from both groups
« Customer interfaces for both groups
« User representatives
« CCB

Attendees should be familiar with the project background, requirements, and design.
Time — after the detailed design is completed and before implementation is begun

Agenda — selective presentation of the detailed design of the system. Emphasis should be
given to changes to the high-level design, system operations, development plan, ctc. since
PDR. Speakers should highlight these changes both on the slides and during their
presentations, so that they become the focus of the review

Materials Distribution
» The detailed design document should be distributed at least 10 days prior to CDR

» CDR hardcopy material is distributed a minimum of 3 days in advance

Key Issues To Be Addressed
Are all baseline diagrams complete to the subroutine level?
Are all interfaces — external and internal — completely specified at the subroutine level?
Is there PDL or equivalent representation for each subroutine?
Will an implementation of this design provide all the required functions?
Does the buildirelease schedule provide for early testing of end-to-end system capabilities?

CDR Hardcopy Material
An outline and suggested contents of the CDR hardcopy material are presented in Figure 7-5.

7-8

iy

Kl

Ll

K |

&L

|

l | T

|

N

3

e w1

11
'

ﬂ“
v

KL

| Wil

01
i [

nrlo { {! LSRN |

{1

SO T I o A 1 KV B I A

it

1

i

o

10.
11.

12
13.
14,

Introduction — background of the project, purpose of the system, and an agenda
outlining review materials to be presented .

Design overview — major design changes since PDR (with justifications)

a. Design diagrams, showing products generated, interconnections among subsystems,
external interfaces

b. Mapping of external interfaces to ICDs and ICD status

Results of prototyping efforts

Changes to system operation since PDR

a. Updated operations scenarios/scripts

b. System performance considerations ;

Changes to major software components since PDR (with justifications)

Requirements traceability matrix mapping requirements to major components

Software reuse strategy

a. Changes to the reuse proposal since PDR

b. New/revised reuse tradeoff analyses

c. Key points of the detailed reuse strategy, including software developed for reuse in
future projects

d. Summary of RSL use — what is used, what is not, reasons, statistics

Changes to testing strategy

a. How test data are to be obtained

b. Drivers/simulators to be built

c. Special considerations for Ada testing

Required Resources — hardware required, internal storage requirements, disk space,
impact on current computer usage, impacts of compiler

Changes to the software development/management plan since PDR

Implementation dependencies (Ada Projects) — the order in which components
should be implemented to optimize unit/package testing)

Updated software size estimates
Milestones and schedules including a well thought-out build plan

Issues, risks, problems, TBD items
a. Review of TBDs from PDR
b. Dates by which TBDs and other issues must be resolved

Figure 7-5. CDR Hardcopy Material

79

OPERATIONAL READINESS REVIEW

ORR Format
Presenters — operations support team and development team

Participants
« User acceptance test team
» Requirements definition, software development, and software maintenance representatives
» QA representatives from all groups
» Customer interfaces for all groups
« CCB

Time — after acceptance testing is complete and 90 days before operations start

Agenda — selective presentation of information from the hardcopy material, omitting details
that are more effectively communicated in hardcopy form and highlighting critical issues (¢.g.,
items 7 and 8 from Figure 7-6)

Materials Distribution
« ORR hardcopy material is distributed a minimum of 5 days before ORR

Key Issues To Be Addressed
What is the status of required system documentation?
What is the status of external interface agreements?

Were the methods used in acceptance testing adequate for verifying that all
requirements have been met?

What is the status of the operations and support plan?

Is there sufficient access to necessary support hardware and software?

Are configuration control procedures established?

What contingency plans to provide operational support have been addressed?

ORR Hardcopy Material
An outline and suggested contents of the ORR hardcopy material are presented in Figure 7-6.

7-10

"
i

i

Bl

1 M

| [.

g m

e

Nk

[
ol

|

| N

i

L1

gl

o

Introduction — purpose of the system and outline of review material

System requirements summary — review of top-level (basic} requirements

a.

b.
c.

°a

o)

ra

.

Background of requirements — overview of project characteristics, major events, and
support

Derived requirements {updated from SRR)

Relationship of requirements to support provided — typical, critical, and special or
contingency support

Operational support scenarios

Relationship of requirements matrix, e.g., of top-level requirements to operational
support scenarios

Organizational interfaces, e.g., that provide system and support input and receive system
output

Data availability for the operating scenarios — frequency, volume, and format
Facilities — computing hardware, environment characteristics, communications
protocols, etc.

General system considerations — high-level description of requirements for computer
storage, graphics,and failure/recovery; operator interaction; system error recovery and
diagnostic output; etc.

Support and test software considerations — high-level description of requirements for
data simulators, test programs, and support utilities

Summary and status of IADs — status of all interface documents with external
organizations

Support system overview

a.

b.
c.

Major software components — purpose, general characteristics, and operating scenarios
supported by programs and subsystems

Testing philosophy

Requirements verification philosophy — demonstration of methods used to ensure that
the software satisfies all system requirements; matrix showing relation between
requirements and tests

Testing and performance evaluation results — summary of system integration and
acceptance test results; evaluation of system performance measured against
performance requirements

System software and documentation status — summary of completed work packages
and list of incomplete work packages with scheduied completion dates and explanation
of delays

Status of operations and support plan

a.
b.

c.

Organizational interfaces — diagrams and tables indicating organizational interfaces,
points of contact, and responsibilities; data flow and media (forms, tapes, voice, log)
Data availability — nominal schedule of input and output data by type, format,
frequency, volume, response time, turnaround time .

Eacilities — nominal schedule of access to computers, support and special-purpose
hardware, operating systems, and support software for normal, critical, emergency, and
contingency operations

Operating scenarios — top-level procedures, processing timelines, and estimated
resources required

Documentation of operations procedures — operations and support handbooks and
update procedures

Figure 7-6. ORR Hardcopy Material (1 of 2)

7-11

System management plan

a. Configuration control procedures — explanation of step-by-step procedures for
maintaining system integrity, recovering from loss, fixing faults, and enhancing system

b. Enhancement/maintenance procedures — initiation, forms, reviews, approval, and
authorization

c. Reporting/testing evaluation procedures — forms, reviews, approval, authorization,
distribution

d. System performance evaluation procedures — for ongoing evaluation

Issues, TBD items, and problems—a characterization of all those items affecting normal
operations as perceived by the developers and users; an assessment of their effect on
operations; and a course of action to resolve them, including required effort, schedule, and

cost
Contingency plans — a priority list of items that could prevent normal operations,

including the steps necessary to work around the problems, the defined levels of operations
during the workarounds, and the procedures to attempt to regain normal operations

Milestones and timeline of events — diagrams, tables, and scripts of events; operating
scenarios: maintenance; enhancement; reviews; training

Figure 7-6. ORR Hardcopy Material (2 of 2)

7-12

I R

Kl

&l |

L

"
i

Wi

g | §

I

!

Wil

[y

t
i

| TR i

"

0

i‘l 1

I R

1

r

| S

"!

AUDITS

The purpose of an audit is to provide an independent assessment of the software project — its condition, its
problems, and its likelihood of reaching successful completion. The audit may be prompted by indications
of problems or by lack of progress, or it may be fulfilling a routine contractual requirement. Occurrence of
one or more of the following conditions on a project should automatically trigger an audit:

« There are significant (> 25%) deviations from planned staffing, resources, or schedule after CDR
« There is a high tumover of staff (>30%)

« It is apparent that a delivery schedule will not be met

« The number of failed tests increases toward the end of system or acceptance testing

It is determined that the system does not fulfill a critical capability

There is evidence that system interfaces will not be met at delivery

An individual or, preferably, a group outside the development team is charged with conducting this
examination. It is essential for the audit team to obtain a clear written statement of the specific objective of
the audit at the start.

When preparing to conduct an audit, several key questions must be addressed:
What is the scope of the audit? Is the entire development effort being examined or only some
particlar component of the project?
What is the final form the audit should take — a presentation, a written report, or both?
To whom will the results be presented?
What is the timetable for completing the audit?
What staff and support resources will be available for the audit work?
Have the development team and its management been informed that an audit is scheduled?

Have specific individuals on the development team been identified as principal contacts for the audit
group?

What constraints exist on the work of the audit team regarding access to documents or
individuals?

Where are the sources for documentation related to the project (requirements statements, plans, etc.)?

Are there specific auditing standards or guidelines that must be observed?

The answers to these questions will form the basis for planning the audit task. Sources of information
include personal interviews with managers, team members, and individuals who interact with the
development team. Documentation must be reviewed to understand the origin of the requirements and the
plans and intermediate products of the devclopment team.

Four steps are involved in conducting the audit of a software development project:

« Determine the current status of the project

« Determine whether the development process is under control

« Identify key items that are endangering successful completion

« Identify specific actions to put the project onto a successful course

7-13

AUDIT STEP #1 — DETERMINE THE CURRENT STATUS
OF THE PROJECT

Audit Team' kli

Given the size and nature of » Consult Table 3-1 and project histories data base (see Section 6)

the problem, where should
the project be?

According to the development/ -
management plan, where
should the project be?

Where does the project .
actually stand now?

for comparison data on similar projects:

— Percentage of effort and schedule consumed thus far
— Percentage of effort by type of activity
— Percentage of code developed thus far

Refer to the software development/ management plan for the
project:

—— What activities should be current?

— How should it be staffed?

— What intermediate products should have been delivered?
— What milestones should have occurred?

From interviews and documentation, identify the following:
current phase, milestones reached, documents delivered,
activity levels, staff composition, project budget, and
actual expenditures

AUDIT STEP #2 — DETERMINE WHETHER THE DEVELOPMENT
PROCESS IS UNDER CONTROL

Audit Question

Is the problem well understood -
and stable?

Is the development/imanagement «
plan being followed?

Audit Team's Checklist

Refer to review hardcopy materials (Figs. 7-2, 7-3, 7-4, 7-5) and
the Requirements Analysis Report (Figure 4-4) for significance
of TBD items

Determine the number of times project size has been reestimated
and the extent of these revisions

From the technical manager, identify the number and cxtent of
specification modifications received by the development team

Compare the development/management plan to actual
development to determine whether

— The schedule is being followed

— Milestones have been met

— The plan is being updated (see Section 2)
— Actual and planned staffing levels agree

Is adequate direction being « Interview team leaders, technical managers, and administrative

provided?

managers to determine whether there is agreement on
— Project scope and objectives

— Expectations and responsibilities at each level
— Progress of the development effort to date

7-14

g Kl «

i

i
i

e Wi &0 Ei m € =L

b

[l

J

N 1
| 1l

£ |

il

g

(R AT

(I

o

AUDIT STEP #3 — IDENTIFY KEY ITEMS THAT ARE ENDANGERING
SUCCESSFUL COMPLETION

Audit Question Audit Team's Checklist
Are resources adequate? « Time — determine if lack of schedule time (regardless of staff) is

a concern by comparison to past projects (Section 6) and by time
estimates (Section 3)

« Staff — compare actual with desired staffing characteristics as to
level of effort (Section 3), staffing pattern (Figure 6-4), team
size (Table 3-5), and composition (Table 3-6)

- Computer — compare actual with expected utilization
(Figures 3-2 and 3-3); from interviews and computer facility
schedules, determine degree of access to computer and level of
service provided

« Support — compare actual level of support services to typical

levels
Is the development process « Determine whether technical standards and guidelines are being
adequate? followed for design, coding, and testing

« Determine whether available tools and methodologies are being
used

« From interviews, determine the procedures for reporting and
resolving problems

Are the organization and « From intervicws, asscss the reporting relationships that cxist, the
planning adequate? tcam morale and tumover, and the pattern of delegating work

« Assess the quality, completencss, and practicality of the software
developmeny/management plan (sce Scction 2)

« From interviews and documentation (Sections 2 and 7), identify
the extent of contingency planning

AUDIT STEP #4 — IDENTIFY SPECIFIC ACTIONS TO PUT THE
PROJECT ON A SUCCESSFUL COURSE

« Recommended actions must be based on results of audit steps 1, 2, and 3

« For general problem of inadequate progress, some options arc as follows

Stop development; generate a realistic plan before continuing

Replace junior personnel with senior staff

- Increase visibility by improving identification and review of intermediate
products

Provide training

7-15

[

L

=

€ KD

g

i

Wi 1

mil

it

(SR

APPENDIX A — SEL SOFTWARE DEVELOPMENT
ENVIRONMENT

PROCESS CHARACTERISTICS AVG. HIGH LOwW
Duration (months) 24 43 19
Effort (staff-years) 14 32 3
Size (1000 source lines of code) 107 246 31
Staff (full time equivalent)

Average 8 15 4

Peak 13 30 5

Individuals 22 44 6
Application Experience (years)

Managers 9 15 4

Technical Staff 4 7 2
Overall Experience (years)

Managers 14 19 10

Technical Staff 6 9 4

NOTES: Type of software: Scientific, ground-based, interactive graphic

Machines: IBM 4341 and DEC VAX 780, 8600, and 8810

Sample: 10 FORTRAN (with 15% in Assembler) and 3 Ada projects
Staff-year = 1864 effort hours

Bl |

GLOSSARY

AGSS attitude ground support system

ATR Assistant Technical Representative
CCB configuration control board

CDR critical design review

M configuration management -

COBE Cosmic Background Explorer

CPU central processing unit

ERBS Earth Radiation Budget Satellite
GOADA GOES Dynamics Simulator in Ada
GOES Geostationary Operational Environmental Satellite
GRO Gamma Ray Observatory

IAD interface agreement document

ICD interface control document

110 input/output

V&V independent verification and validation
1.OC lines of code

MOI memorandum of information

MOU memorandum of understanding

ORR operational readiness revicw

PDL program design language (pscudocode)
PDR preliminary design revicw

QA quality assurance

RSL reusable softwarc library

SEF subjective evaluation form

SEL Software Engineering Laboratory
SIRD support instrumentation requirements document
SLOC source lines of code

SME Software Management Environment
SRR system requirements review

SSR software specifications review

TBD to be determined

TCOPS Trajectory Computation and Orbital Products System

| B e NN =W "M """ Mm99 & '® (8 U NP

»
,

1

{

10.

11.

12

REFERENCES

Software Engineering Laboratory, SEL-81-104, The Software Engineering Laboratory,
D. N. Card et al., February 1982

—, SEL-81-205, Recommended Approach to Software Development, F. E. McGarry,
G. Page, S. Eslinger, et al., April 1983

. —, SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, and F. E. McGarry,

August 1982

—, SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page,
D. N. Card, et al., February 1984

. —, SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering

Laboratory, L.O. Jun, S.R.Valett, June 1990

. H.D. Rombach, B.T. Ulery, "Measurement Based Improvement of Maintenance in the

SEL,"Proceedings of the Fourteenth Annual Software Engineering Workshop, SEL-89-007,
November 1989

Software Engineering Laboratory, SEL-87-008, Data Collection Procedures for the Rehosted
SEL Database, G. Heller, October 1987

—, SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card,
R. W. Selby, Jr., F. E. McGarry, et al., April 1985

—, SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory:
Project Description and Early Analysis, S. Green et al., March 1990

—, SEL-85-005, Software Verification and‘Testing, D. N. Card, C. Antle, and E. Edwards,
December 1985

F. E. McGarry, "What Have We Learned in 6 Years?", Proceedings of the Seventh Annual
Software Engineering Workshop, SEL-82-007, December 1982

Software Engineering Laboratory, SEL-89-003, Software Management Environment (SME)
Concepts and Architecture, W. Decker and J. Valett, August 1989

R-1

i

il u

i

i

i

LI

0l

Ll

1

a
-l

‘H '

[(|

;l \Tl m

el

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are organized into two
groups. The first group is composed of documents issued by the Software Engineering Laboratory (SEL)
during its research and development activities. The second group includes materials that were published -
elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001,
SEL-77-002,
SEL-77-004,

SEL-77-005,

SEL-78-005,
SEL-78-006,

SEL-78-007,

SEL-78-302,

SEL-79-002,

SEL-79-003,

SEL-79-004,

SEL-79-005,

SEL-80-002,

SEL-80-003,

SEL-80-005,

SEL-80-006,

SEL-80-007,

Proceedings From the First Summer Software Engineering Workshop, August 1976
Proceedings From the Second Summer Software Engineering Workshop, September 1977
A Demonstration of AXES for NAVPAK, M. Hamilton and S. Zeldin, September 1977

GSFC NAVPAK Design Specifications Languages Study, P. A. Scheffer and C. E. Vclez,
October 1977

Proceedings From the Third Summer Software Engineering Workshop, September 1978

GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer and
C. E. Velez, November 1978

Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp, December 1978

FORTRAN Static Source Code Analyzer Program (SAP) User’s Guide (Revision 3),
W. J. Decker and W. A, Taylor, July 1986

The Software Engineering Laboratory: Relationship Equations, K. Freburger and
V. R. Basili, May 1979

Common Software Module Repository (CSMR) System Description and User’s Guide,
C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in the

Goddard Space Flight Center (GSFC) Code 580 Software Design Environment,
C. E. Goorevich, A. L. Green, and W.], Decker, September 1979

Proceedings From the Fourth Summer Software Engineering Workshop, November 1979

Multi-Level Expression Design Language-Requirement Level (MEDL-R) System
Evaluation, W. J. Decker and C. E. Goorevich, May 1980

Multimission Modular Spacecraft Ground Support Software System (MMS/GSSS) Siate-
of-the-Art Computer SystemsiCompatibility Study, T. Welden, M. McClellan, and

P. Licbertz, May 1980

A Study of the Musa Reliability Model, A. M. Miller, November 1980

Proceedings From the Fifth Annual Software Engineering Workshop, November 1980

An Appraisal of Selected Cost/Resource Estimation Models for Software Systems,
J. F. Cook and F. E. McGarry, December 1980

B-1

SEL-80-008,

SEL-81-008,

SEL-81-009,

SEL-81-011,

SEL-81-012,

SEL-81-013,
SEL-81-014,

SEL-81-101,

SEL-81-104,

SEL-81-107,

SEL-81-110,

SEL-81-205,

SEL-82-001,

SEL-82-004,
SEL-82-007,
SEL‘82‘(X)8’

SEL-82-102,

SEL-82-105,

SEL-82-906,

SEL-83-001,

Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

Cost and Reliability Estimation Models (CAREM) User's Guide, J. F. Cook and
E. Edwards, February 1981 i

Software Engineering Laboratory Programmer Work-bench Phase 1 Evaluation,
W. J. Decker and F. E. McGarry, March 1981

Evaluating Software Development by Analysis of Change Data, D. M. Weiss,
November 1981

The Rayleigh Curve as a Model for Effort Distribution Over the Life of Medium Scale
Software Systems, G. O. Picasso, December 1981

Proceedings From the Sixth Annual Software Engineering Workshop, December 1981

Automated Collection of Software Engineering Data in the Software Engineering
Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., August 1982

The Software Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, ctal.,,
February 1982

Software Engineering Laboratory (SEL) Compendium of Tools, W. I. Decker,
W. A. Taylor, and E. J. Smith, February 1982

Evaluation of an Independent Verification and Validation (IV&V) Methodology for Flight
Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

Recommended Approach to Software Development, F. E. McGarry, G. Page, S. Eslinger,
et al., April 1983

Evaluation of Management Measures of Software Development, G. Page, D. N. Card, and
F. E. McGarry, Scptember 1982, vols. 1 and 2

Collected Software Engineering Papers: Volume 1, July 1982
Proceedings From the Seventh Annual Software Engineering Workshop, December 1982

Evaluating Software Development by Analysis of Changes: The Data From the Software
Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

FORTRAN Static Source Code Analyzer Program (SAP) System Description (Revision 1),
W. A. Taylor and W. J. Decker, April 1985

Glossary of Software Engineering Laboratory Terms, T. A. Babst, F. E. McGarry, and
M. G. Rohleder, October 1983

Annotated Bibliography of Software Engineering Laboratory Literature, P. Groves and
J. Valett, November 1990

An Approdch to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, et al,
February 1984

B-2

g W |

il

il

Wi s mU o s

i

W

e i EE € €

il

B

'

AN
i

A

SEL-83-002,

SEL-83-003,
SEL-83-006,

SEL-83-007,

SEL-83-106,
SEL-84-101,
SEL-84-003,

SEL-84-004,

SEL-85-001,
SEL-85-002,

SEL-85-003,
SEL-85-004,

SEL-85-005,
SEL-85-006,

SEL-86-001,

SEL-86-002,

SEL-86-003,

SEL-86-004,
SEL-86-005,
SEL-86-006,

SEL-87-001,

SEL-87-002,

Measures and Metrics for Sofrware Development, D. N. Card, F. E. McGarry, G. Page
et al., March 1984

Collected Software Engineering Papers: Volume II, November 1983

Monitoring Software Development Through Dynamic Variables, C. W. Docrflinger,
November 1983

Proceedings From the Eighth Annual Software Engineering Workshop, November 1983

Monitoring Software Development Through Dynamic Variables (Revision 1),
C. W. Doerflinger, November 1989

Manager's Handbook for Software Development (Revision 1), L. Landis, F. McGarry,
S. Waligora, et al., November 1990

Investigation of Specification Measures for the Software Engineering Laboratory (SEL),
W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

Proceedings From the Ninth Annual Software Engineering Workshop, November 1984

A Comparison of Software Verification Techniques, D. N. Card, R. W. Selby, Jr.,
F. E. McGarry, et al., April 1985

Ada Training Evaluation and Recommendations From the Gamma Ray Observatory Ada
Development Team, R. Murphy and M. Stark, October 1985

Collected Software Engineering Papers: Volume ITI, November 1985

Evaluations of Software Technologies: Testing, Cleanroom, and Metrics,
R. W. Selby, Jr., May 1985

Software Verification and Testing, D. N. Card, C. Antle, and E. Edwards, December 1985
Proceedings From the Tenth Annual Software Engineering Workshop, December 1985

Programmer’s Handbook for Flight Dynamics Software Development, R. Wood and
E. Edwards, March 1986

General Object-Oriented Software Development, E. Seidewitz and M. Stark, August 1986

Flight Dynamics System Software Development Environment Tutorial, J. Buell and
P. Myers, July 1986

Collected Software Engineering Papers: Volume IV, November 1986
Measuring Software Design, D. N. Card, October 1986
Proceedings From the Eleventh Annual Software Engineering Workshop, December 1986

Product Assurance Policies and Procedures for Flight Dynamics Software Development,
S. Perry et al., March 1987

Ada Style Guide (Version 1.1), E. Seidewilz et al., May 1987

B-3

SEL-87-003,
-SEL-87-004,

SEL-87-008,
SEL-87-009,
SEL-87-010,
SEL-88-001,

SEL-88-002,
SEL-88-003,

SEL-88-004,
SEL-88-005,
SEL-89-002,

SEL-89-003,
SEL-89-004,
SEL-89-005,

SEL-89-006,
SEL-89-007,
SEL-89-008,
SEL-89-101,
SEL-90-001,

SEL-90-002,

SEL-90-003,

Guidelines for Applying the Composite Specification Model (CSM), W. W. Agresti,
June 1987 , _

Assessing the Ada Design Process and Its Implications: A Case Study, S. Godfrey,
C. Brophy, et al., July 1987

Data Collection Procedures for the Rehosted SEL Database, G. Heller, October 1987
Collected Software Engineering Papers: Volume V, S. DeLong, November 1987
Proceedings From the Twelfth Annual Software Engineering Workshop, December 1987

System Testing of a Production Ada Project: The GRODY Study, J. Seigle, L. Esker, and
Y. Shi, November 1988

Collected Software Engineering Papers: Volume VI, November 1988

Evolution of Ada Technology in the Flight Dynamics Area: Design Phase Analysis,
K. Quimby and L. Esker, December 1988

Proceedings of the Thirteenth Annual Software Engineering Workshop, November 1988
Proceedings of the First NASA Ada User’s Symposium, December 1988

Implementation of a Production Ada Project: The GRODY Study, S. Godfrey and
C. Brophy, September 1989

Software Management Environment (SME) Concepts and Architecture, W. Decker and
J. Valett, August 1989

Evolution of Ada Technology in the Flight Dynamics Area: Implementation/Testing Phase
Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry, November 1989

Lessons Learned in the Transition io Ada From FORTRAN at NASA/Goddard, C. Brophy,
November 1989

Collected Software Engineering Papers: Volume VII, November 1989

Proceedings of the Fourteenth Annual Software Engineering Workshop, November 1989
Proceedings of the Second NASA Ada Users’ Symposium, November 1989

Software Engineering Laboratory (SEL) Database Organization and User’s Guide

(Revision 1), M. So, G. Heller, S. Steinberg, K. Pumphrey, and D. Spicgel,
February 1990

Database Access Manager for the Software Engineering Laboratory (DAMSEL) User's
Guide, M. Buhler and K. Pumphrey, March 1990

The Cleanroom Case Study in the Software Engineering Laboratory: Project Description
and Early Analysis, S. Green et al., March 1990

A Study of the Portability of an Ada System in the Software Engineering Laboratory
(SEL), L. O. Jun and S. R. Valett, June 1990

B4

i Wi Wiy E E

[[IRTEN |

ik

il

Lt

|Gl

Ul

1
i

{

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experiment Summary,
T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-RELATED LITERATURE

4Agrc:sti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Satellite Simulation:
A Case Study,” Proceedings of the First International Symposium on Ada for the NASA Space Station,
June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Measuring Software Technology,” Program
Transformation and Programming Environments. New York: Springer-Verlag, 1984

1Railey, J. W., and V. R. Basili, "A Meta-Model for Software Development Resource Expenditures,”
Proceedings of the Fifth International Conference on Software Engineering. New York: IEEE Computer
Society Press, 1981

8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development Reusability,”
Proceedings of the Eighth Annual National Conference on Ada Technology, March 1990

1Basili, V. R., "Models and Metrics for Software Management and Engincering,” ASME Advances in
Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering. New York:
IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the First Pan-Pacific
Computer Conference, September 1985

TRasili, V. R., Maintenance = Reuse-Oriented Software Development, University of Maryland, Technical
Report TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland, Technical
Report TR-2263, Junc 1989

8Basili, V. R., "Viewing Maintcnance as Reuse-Oriented Software Development,” IEEE Software,
January 1990

1Basili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution and Resource
Estimation Problems?,” Journal of Systems and Software, February 1981, vol. 2, no. 1

IBasili, V. R., and K. Freburger, "Programming Mcasurcment and Estimation in the Software Enginccring
Laboratory," Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and Other Variables in the
SEL," Proceedings of the International Computer Software and Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in the SEL
Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical Investigation,”
Communications of the ACM, January 1984, vol. 27, no. |

B-5

1Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Software Engineering
Laboratory,” Proceedings of the ACM SIGMETRICS Symposium/Workshop: Quality Metrics,
March 1981

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of Maryland,
Technical Report TR-1442, September 1984

3BRasili, V. R., and C. L. Ramsey, "ARROWSMITH-P—A Prototype Expert System for Software
Engineering Management,” Proceedings of the IEEE/MITRE Expert Systems in Governmen! Symposium,

October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Development,” Proceedings
of the Workshop on Quantitative Software Models for Reliability, Complexity, and Cost. New York:
IEEE Computer Society Press, 1979 '

5Basili, V., and H. D. Rombach, "Tailoring the Software Process to Project Goals and Environments,”
Proceedings of the Sth International Conference on Software Engineering, March 1987

S5Basili, V., and H. D. Rombach, "T A M E: Tailoring an Ada Measurement Environment,” Proceedings of
the Joint Ada Conference, March 1987

5Basili, V., and H. D. Rombach, “T A M E: Integrating Measurement Into Software Environments,”
University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement Oriented Software
Environments," /EEE Transactions on Software Engineering, June 1988

7TRasili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A Reuse-Enabling
Software Evolution Environment, University of Maryland, Technical Report TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards a Comprehensive Framework for Reuse: Model-Based Reuse
Characierization Schemes, University of Maryland, Technical Report TR-2446, April 1990

2Basili, V. R., R. W. Selby, Jr., and T. Phillips, "Metric Analysis and Data Validation Across FORTRAN
Projects,” IEEE Transactions on Software Engineering, November 1983)

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Characteristic Softwarc
Metric Set,” Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Socicty Press, 1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effectiveness of Software Testing Strategies,
University of Maryland, Technical Report TR-1501, May 1985

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection and Analysis
Mecthodology,” Proceedings of the NATO Advanced Study Institute, August 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software Engineering," /[ELE
Transactions on Software Engineering, July 1986

5BRasili, V. and R. Selby, Jr., "Comparing the Effectiveness of Software Testing Strategics," IEEE
Transactions on Software Engineering, Deccmber 1987

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Software Engineering Data,
University of Maryland, Technical Report TR-1235, December 1982

B-6

iLRe
K

U

(I

1
i

Wil |

m

UIRI

T
1199

TR TR S NI T .

L (N

(]l

(!

.

SO

LRI
ik

U

3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data,” I[EEE
Transactions on Software Engineering, November 1984

1Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objectives,” Proceedings of
the Fifteenth Annual Conference on Computer Personnel Research, August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment,” Proceedings of the
Software Life Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Laboratory,” Proceedings of
the Second Software Life Cycle Management Workshop, August 1978

1Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics in the Local
Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development,” Proceedings of the
Third International Conference on Software Engineering. New York: TEEE Computer Society Press, 1978

SBrophy, C., W. Agresti, and V. Basili, "Lessons Learned in Use of Ada-Oriented Design Methods,”
Proceedings of the Joint Ada Conference, March 1987

6Brophy, C.E, S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the Implementation
Phase of a Large Ada Project,” Proceedings of the Washington Ada Technical Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size,” Computer Sciences
Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estimation,” Computer
Sciences Corporation, Technical Memorandum, November 1982

3Card, D. N., "A Software Technology Evaluation Program,” Annais do XVIII Congresso Nacional de
Informatica, October 1985

5Card, D., and W. Agresti, "Resolving the Software Science Anomaly,” The Journal of Sysiems and
Software, 1987

6Card, D. N., and W. Agresti, "Measuring Softwarc Design Complexity,” The Journal of Systems and
Software, Junc 1988 '

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Enginecring View of Flight
Dynamics Analysis System,” Parts I and II, Computer Sciences Corporation, Technical Memorandum,
February 1984

4Card, D. N., V. E. Church, and W, W. Agresti, "An Empirical Study of Software Design Practices,” [ELE
Transactions on Software Engineering, February 1986

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules," Computer Scicnces
Corporation, Technical Memorandum, June 1984

5Card, D., F. McGarry, and G. Page, "Evaluating Software Enginecring Technologies,” /EEE Transactions
on Software Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization," Proceedings of the
Eighth International Conference on Software Engineering. New York: IEEE Computer Society Press, 1985

B-7

1Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engineering
Methodologies,” Proceedings of the Fifth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for Assessing Softwarc
Prototypes,” ACM Software Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through Dynamic Variables,"
Proceedings of the Seventh International Computer Software and Applications Conference. New York:
IEEE Computer Society Press, 1983

5Doubleday, D., "ASAP: An Ada Static Source Code Analyzer Program,” University of Maryland,
Technical Report TR-1895, August 1987

6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada Project," Proceedings of
the 1988 Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for NAVPAK, Higher Order Software, Inc.,
TR-9, September 1977 (also designated SEL-77-005)

Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical Association of Software
Data, University of Maryland, Technical Report TR-1848, May 1987 :

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Proceedings of the Tenth
International Conference on Software Engineering, April 1988

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering, University of
Maryland, Technical Report TR-1765, July 1987 .

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering Information Bascs From
Software Process and Product Specifications,” Proceedings of the 22nd Annual Hawaii International
Conference on System Sciences, January 1989

SMcGarry, F., and W. Agresti, "Mcasuring Ada for Softwarc Development in the Softwarc Engincering
Laboratory (SEL)," Proceedings of the 21st Annual Hawaii International Conference on System Sciences,

January 1988

7McGarry, F., L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production Soflw‘arc
Environment," Proceedings of the Sixth Washington Ada Symposium (WADAS), Junc 1989

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource Quality on the
Software Development Process and Product,” Proceedings of the Hawaiian International Conference on
System Sciences, January 1985

National Acronautics and Space Administration (NASA), NASA Software Rescarch Technology Workshop
(Proceedings), March 1980

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Experience With Independent Verification and
Validation," Proceedings of the Eighth International Computer Software and Applications Conference,
November 1984

SRamsey, C., and V. R. Basili, An Evaluation of Expert Systems for Software Engineering Managemen,
University of Maryland, Technical Report TR-1708, September 1986

BS

a.i B 8 il | L [H(— §

i
b

K

'l

i
i

"y
whl o

{!

(I

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process Using Structural Coverage," Proceedings of the
Eighth International Conference on Software Engineering. New York: IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on Maintainability,”
IEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., "Design Measurement: Some Lessons Leamed,” /EEE Software, March 1990

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Mainienance: An Industrial Case Study,"
Proceedings From the Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis for Generating
Customized SE Information Bases,” Proceedings of the 22nd Annual Hawaii International Conference on
System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance Improvemen: Program:
Lessons Learned in the SEL, University of Maryland, Technical Report TR-2252, May 1989

5Seidewitz, E., "General Object-Oriented Software Development: Background and Experience,” Proceedings
of the 21st Hawaii International Conference on System Sciences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life Cycle Approach,”
Proceedings of the CASE Technology Conference, April 1988 -

6Scidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings of the 1987 Conference
on Object-Oriented Programming Systems, Languages, and Applications, October 1987

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Development Methodology,
Proceedings of the First International Symposium on Ada for the NASA Space Station, June 1986

8Stark, M., "On Designing Parameterized Systems Using Ada," Proceedings of the Seventh Washington
Ada Symposium, June 1990 '

TStark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,” Proceedings of TRI-
Ada 1989, October 1989 ‘

Stark, M., and E. Seidewitz, "Towards a General Object-Oricnted Ada Lifecycle," Proceedings of the Joint
Ada Conference, March 1987

8Straub, P. A., and M. Zelkowitz, "PUC: A Functional Specification Language for Ada,” Proceedings of
the Tenth International Conference of the Chilean Computer Science Society, July 1990

7Sunazuka. T., and V. R. Basili, Integrating Automated Support for a Software Management Cycle Into the
TAME System, University of Maryland, Technical Report TR-2289, July 1989

Tumer, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Development Data, Data and
Analysis Center for Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compendium, Data and Analysis Center for
Software, Special Publication, April 1981)

5Valéll, J., and F. McGarry, "A Summary of Software Measurement Expericnces in the Software

Engineering Laboratory," Proceedings of the 21st Annual Hawaii International Conference on System
Sciences, January 1988 -

B9

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of Changes: Some Data
From the Software Engineering Laboratory,” IEEE Transactions on Software Engineering, February 1985

5wWu, L., V. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software Systems,” Proceedings of
the Joint Ada Conference, March 1987

1Zelkowitz, M. V., "Resource Estimation for Medium Scale Software Projects,” Proceedings of the Twelfth
Conference on the Interface of Statistics and Computer Science. New York: IEEE Computer Socicty Press,

1979

27elkowitz, M. V., "Data Collection and Evaluation for Experimental Computer Science Rescarch,”
Empirical Foundations for Computer and Information Science (Proceedings), November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," Proceedings of the 26th
Annual Technical Symposium of the Washington, D.C., Chapter of the ACM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development,” Journal of Systems and
Software, 1988

8Zelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences with Syntax Editors,"
Information and Software Technology, April 1990

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of a Software Measurcment Facility,”
Proceedings of the Software Life Cycle Management Workshop, September 1977

NOTES:

1This article also appears in SEL-82-004, Collected Software Engineering Papers: Volume I,
July 1982,

2This article also appears in SEL-83-003, Collected Software Engineering Papers: Volume 1,
November 1983.

3This article also appears in SEL-85-003, Collected Software Engineering Papers: Volume 11T,
November 1985. :

4This article also appears in SEL-86-004, Collected Software Engineering Papers: Volume I v,
November 1986.

5This article also appears in SEL-87-009, Collected Software Engineering Papers: Volume V.,
November 1987.

6This article also appears in SEL-88-002, Collected Software Engineering Papers: Volume VI,
November 1988.

TThis article also appears in SEL-89-006, Collected Software Engineering Papers: Volume VII,
November 1989.

8This article also appears in SEL-90-005, Collected Software Engincering Papers: Volume VIII,
November 1990.

B-10

[€l K Wil g K u £

[| L. i .

il

g

